The effect of position-dependent magnetic field on nanofluid forced convective heat transfer and entropy generation in a microchannel

被引:0
|
作者
Hosseinali Soltanipour
Shahram Khalilarya
Saber Yekani Motlagh
Iraj Mirzaee
机构
[1] Urmia University,Faculty of Engineering
[2] Urmia University of Technology,Department of Mechanical Engineering
关键词
Entropy generation; Nanofluid; Position-dependent magnetic field; Hartmann number; Heat transfer enhancement;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a numerical analysis of Al2O3-water nanofluid forced convection and entropy generation in a microchannel. The nanofluid is subjected to the position-dependent magnetic fields arising from electrical current through wires. The governing equations considering Lorentz body forces are discretized using SIMPLE-based finite volume approach. The effects of Hartmann number, axial position and number of magnetic sources and Reynolds number on heat transfer enhancement are explored. Moreover, frictional, magnetic, heat transfer and total entropy generation are computed for Hartmann number ranging from 0 to 1000. Results show that hydrodynamic and thermal behaviors of nanofluid in the microchannel are alerted considerably by the application of position-dependent magnetic field. It is observed that due to Lorentz forces vortices are generated near the magnetic sources and number and strength of vortices depend strongly on Hartmann number. For multiple magnetic sources heat transfer enhancement depends on number and relative position of magnetic sources. Second law analysis indicates that total entropy generation rate declines as Hartmann number increases.
引用
收藏
页码:345 / 355
页数:10
相关论文
共 50 条
  • [1] The effect of position-dependent magnetic field on nanofluid forced convective heat transfer and entropy generation in a microchannel
    Soltanipour, Hosseinali
    Khalilarya, Shahram
    Motlagh, Saber Yekani
    Mirzaee, Iraj
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2017, 39 (01) : 345 - 355
  • [2] Investigation of the nanofluid convective flow and entropy generation within a microchannel heat sink involving magnetic field
    Hosseini, S. R.
    Sheikholeslami, M.
    POWDER TECHNOLOGY, 2019, 351 : 195 - 202
  • [3] Flow field, heat transfer and entropy generation of nanofluid in a microchannel using the finite volume method
    Kerdarian M.
    Kianpour E.
    Journal of Computational and Applied Research in Mechanical Engineering, 1600, 8 (02): : 211 - 222
  • [4] Magnetic Field Inhibition of Convective Heat Transfer in Magnetic Nanofluid
    Zakinyan, Arthur
    Kunikin, Stanislav
    Chernyshov, Andrey
    Aitov, Vitali
    MAGNETOCHEMISTRY, 2021, 7 (02) : 1 - 11
  • [5] Entropy generation of nanofluid flow and heat transfer driven through a paralleled microchannel
    Xu, Hang
    Raees, Ammarah
    Xu, Xiao-Hang
    CANADIAN JOURNAL OF PHYSICS, 2019, 97 (06) : 678 - 691
  • [6] Effect of nanoparticle diameter on the forced convective heat transfer of nanofluid (water
    Azimi, Seyyed Shahabeddin
    Kalbasi, Mansour
    Namazi, Mohammad Hosain
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2014, 5 (03)
  • [7] INVESTIGATING THE EFFECT OF BROWNIAN MOTION MODELS ON HEAT TRANSFER AND ENTROPY GENERATION IN NANOFLUID FORCED CONVECTION
    Pourmohamadian, Hossein
    Sheikhzadeh, Ghanbar Ali
    Aghaei, Alireza
    Ehteram, Hamidreza
    Adibi, Mohammad
    THERMAL SCIENCE, 2019, 23 (02): : 485 - 496
  • [8] Entropy generation of nanofluid flow in a microchannel heat sink
    Manay, Eyuphan
    Akyurek, Eda Feyza
    Sahin, Bayram
    RESULTS IN PHYSICS, 2018, 9 : 615 - 624
  • [9] Investigation of forced convective heat transfer with magnetic field effect on water/ethylene glycol-cobalt zinc ferrite nanofluid
    Lee, Areum
    Jeon, Yongseok
    Chinnasamy, Veerakumar
    Cho, Honghyun
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2021, 128
  • [10] ASSISTED CONVECTIVE HEAT TRANSFER AND ENTROPY GENERATION IN A SOLAR COLLECTOR FILLED WITH NANOFLUID
    Nasrin, R.
    Alim, M. A.
    Hasanuzzaman, M.
    JOURNAL OF NAVAL ARCHITECTURE AND MARINE ENGINEERING, 2016, 13 (02): : 135 - 150