On average losses in the ruin problem with fractional Brownian motion as input

被引:0
|
作者
Patrick Boulongne
Daniel Pierre-Loti-Viaud
Vladimir Piterbarg
机构
[1] Université Paris 8,
[2] Université Pierre et Marie Curie,undefined
[3] Moscow Lomonosov State University,undefined
来源
Extremes | 2009年 / 12卷
关键词
Gaussian process; Large excursions; Average loss; Ruin problem; 60G15;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the model \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S_{t}=u+ct-B_{t}^{H}$\end{document}, where u > 0, c > 0, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B_{t}^{H}$\end{document} is the fractional Brownian motion with Hurst parameter H, 0 < H < 1. We study the asymptotic behavior of average losses in the case of ruin, i.e. the asymptotic behavior of the conditional expected value \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E\left( -\inf _{t\in\lbrack0,T]}S_{t}\left\vert \inf_{t\in\lbrack0,T]}S_{t}<0\right. \right) $\end{document} as u→ ∞ . Three cases are considered: the short time horizon, with T finite or growing much slower than u; the long time horizon, with T at or above the time of ruin, including infinity; and the intermediate time horizon, with T proportional to u but not growing as fast as in the long time horizon. As one of the examples, we derive an asymptotically optimal portfolio minimizing average losses in the case of two independent markets.
引用
收藏
页码:77 / 91
页数:14
相关论文
共 50 条
  • [1] On average losses in the ruin problem with fractional Brownian motion as input
    Boulongne, Patrick
    Pierre-Loti-Viaud, Daniel
    Piterbarg, Vladimir
    EXTREMES, 2009, 12 (01) : 77 - 91
  • [2] On the ruin probability for physical fractional Brownian motion
    Hüsler, J
    Piterbarg, V
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2004, 113 (02) : 315 - 332
  • [3] Ruin problem of a two-dimensional fractional Brownian motion risk process
    Ji, Lanpeng
    Robert, Stephan
    STOCHASTIC MODELS, 2018, 34 (01) : 73 - 97
  • [4] Fractional Brownian motion ruin model with random inspection time
    Jasnovidov, Grigori
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2025,
  • [5] Statistical characteristics of queue with fractional Brownian motion input
    Chen, J.
    Bhatia, H. S.
    Addie, R. G.
    Zukerman, M.
    ELECTRONICS LETTERS, 2015, 51 (09) : 699 - 700
  • [6] Bilinear stochastic systems with fractional Brownian motion input
    Iglói, E
    Terdik, G
    ANNALS OF APPLIED PROBABILITY, 1999, 9 (01): : 46 - 77
  • [7] On the supremum of γ-reflected processes with fractional Brownian motion as input
    Hashorva, Enkelejd
    Ji, Lanpeng
    Piterbarg, Vladimir I.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (11) : 4111 - 4127
  • [8] The Disinvestment Problem under Fractional Brownian Motion
    Ding, Shanshan
    Li, Shenghong
    ICMS2010: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION, VOL 6: MODELLING & SIMULATION INDUSTRIAL ENGINEERING & MANAGEMENT, 2010, : 282 - 285
  • [9] Approximation of the maximum of storage process with fractional Brownian motion as input
    Xu, Zhengchun
    Tan, Zhongquan
    Tang, Linjun
    STATISTICS & PROBABILITY LETTERS, 2018, 140 : 147 - 159
  • [10] A parabolic stochastic differential equation with fractional Brownian motion input
    Grecksch, W
    Anh, VV
    STATISTICS & PROBABILITY LETTERS, 1999, 41 (04) : 337 - 346