Closed Special Weingarten Surfaces in the Standard Three Sphere

被引:0
|
作者
Sebastião C. de Almeida
Fabiano G. B. Brito
Roseli Nozaki
机构
[1] CAEN,Departamento de Matemática e Estatística (DME)
[2] Universidade Federal do Ceará,undefined
[3] Universidade Federal do Estado do Rio de Janeiro,undefined
[4] Universidade Estadual de Maringá,undefined
来源
Results in Mathematics | 2009年 / 56卷
关键词
53C42; 53C40; Special Weingarten surfaces; minimal surfaces in ; Heegard surfaces;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we introduce the notion of special Weingarten surfaces of minimal type in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{S}^3$$\end{document}. Applying equivariant geometry techniques we construct rotational examples and study the embedness problem for those special surfaces.
引用
收藏
相关论文
共 50 条
  • [1] Closed Special Weingarten Surfaces in the Standard Three Sphere
    de Almeida, Sebastiao C.
    Brito, Fabiano G. B.
    Nozaki, Roseli
    RESULTS IN MATHEMATICS, 2009, 56 (1-4) : 501 - 518
  • [2] On Closed Weingarten Surfaces
    Wolfgang Kühnel
    Michael Steller
    Monatshefte für Mathematik, 2005, 146 : 113 - 126
  • [3] On closed weingarten surfaces
    Kühnel, W
    Steller, M
    MONATSHEFTE FUR MATHEMATIK, 2005, 146 (02): : 113 - 126
  • [4] Rotational linear Weingarten surfaces into the Euclidean sphere
    A. Barros
    J. Silva
    P. Sousa
    Israel Journal of Mathematics, 2012, 192 : 819 - 830
  • [5] ROTATIONAL LINEAR WEINGARTEN SURFACES INTO THE EUCLIDEAN SPHERE
    Barros, A.
    Silva, J.
    Sousa, P.
    ISRAEL JOURNAL OF MATHEMATICS, 2012, 192 (02) : 819 - 830
  • [6] Special Weingarten surfaces foliated by circles
    Rafael López
    Monatshefte für Mathematik, 2008, 154 : 289 - 302
  • [7] A class of generalized special Weingarten surfaces
    Corro, Armando M., V
    Dias, Diogo G.
    Riveros, Carlos M. C.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2019, 30 (14)
  • [8] Special Weingarten surfaces foliated by circles
    Lopez, Rafael
    MONATSHEFTE FUR MATHEMATIK, 2008, 154 (04): : 289 - 302
  • [9] A complete invariant for closed surfaces in the three-sphere
    Bellettini, Giovanni
    Paolini, Maurizio
    Wang, Yi-Sheng
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2021, 30 (06)
  • [10] Special Weingarten surfaces with planar convex boundary
    Nelli, B.
    Pipoli, G.
    Tassi, M. P.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2025,