Numerical simulation of flows past flat plates using volume penalization

被引:0
|
作者
Kai Schneider
Mickaël Paget-Goy
Alberto Verga
Marie Farge
机构
[1] M2P2-CNRS,IM2NP
[2] Aix-Marseille Université,CNRS, Aix
[3] M2P2-CNRS,Marseille Université
[4] Aix-Marseille Université,undefined
[5] Avenue Escadrille Normandie Niemen,undefined
[6] LMD-CNRS,undefined
[7] Ecole Normale Supérieure,undefined
来源
关键词
Instability of shear layers; Vortex dynamics; Computational methods in fluid dynamics; Free shear layers; Wavelets; Spectral methods; Primary 65M85; Secondary 76D17; 65T60; 65M70;
D O I
暂无
中图分类号
学科分类号
摘要
We present numerical simulations of two-dimensional viscous incompressible flows past flat plates having different kind of wedges: one tip of the plate is rectangular, while the other tip is either a wedge with an angle of 30∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$30^\circ $$\end{document} or a round shape. We study the shear layer instability of the flow considering different scenarios, either an impulsively started plate or an uniformly accelerated plate, for Reynolds number Re=9500\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Re = 9500$$\end{document}. The volume penalization method, with either a Fourier spectral or a wavelet discretization, is used to model the plate geometry with no-slip boundary conditions, where the geometry of the plate is simply described by a mask function. On both tips, we observe the formation of thin shear layers which are rolling up into spirals and form two primary vortices. The self-similar scaling of the spirals corresponds to the theoretical predictions of Saffman for the inviscid case. At later times, these vortices are advected downstream and the free shear layers undergo a secondary instability. We show that their formation and subsequent dynamics is highly sensitive to the shape of the tips. Finally, we also check the influence of a small riblet, added on the back of the plate on the flow evolution.
引用
收藏
页码:481 / 495
页数:14
相关论文
共 50 条
  • [1] Numerical simulation of flows past flat plates using volume penalization
    Schneider, Kai
    Paget-Goy, Mickael
    Verga, Alberto
    Farge, Marie
    COMPUTATIONAL & APPLIED MATHEMATICS, 2014, 33 (02): : 481 - 495
  • [2] Characteristic Based Volume Penalization Method for Numerical Simulation of Compressible Flows on Unstructured Meshes
    Abalakin, I., V
    Vasilyev, O. V.
    Zhdanova, N. S.
    Kozubskaya, T. K.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2021, 61 (08) : 1315 - 1329
  • [3] Characteristic Based Volume Penalization Method for Numerical Simulation of Compressible Flows on Unstructured Meshes
    I. V. Abalakin
    O. V. Vasilyev
    N. S. Zhdanova
    T. K. Kozubskaya
    Computational Mathematics and Mathematical Physics, 2021, 61 : 1315 - 1329
  • [4] Numerical simulation and control of bluff-body flows using the penalization method
    Bruneau, Charles-Henri
    Mortazavi, Iraj
    Wilczyk, Gwendal
    COMPUTATIONAL FLUID DYNAMICS 2004, PROCEEDINGS, 2006, : 343 - +
  • [5] ON THEORY OF ASYMMETRIC SHEAR FLOWS PAST FLAT PLATES
    MARK, RM
    JOURNAL OF FLUID MECHANICS, 1966, 25 : 457 - &
  • [6] Numerical analysis of flows past two parallel flat plates in the free-molecular regime
    Jin, Xu-Hong
    Huang, Fei
    Cheng, Xiao-Li
    Wang, Qiang
    Wang, Bing
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2020, 34 (14-16):
  • [7] Numerical simulation of the transient flow behaviour in tube bundles using a volume penalization method
    Schneider, K
    Farge, M
    JOURNAL OF FLUIDS AND STRUCTURES, 2005, 20 (04) : 555 - 566
  • [8] Direct numerical simulation of aeroacoustic sound by volume penalization method
    Komatsu, Ryu
    Iwakami, Wakana
    Hattori, Yuji
    COMPUTERS & FLUIDS, 2016, 130 : 24 - 36
  • [9] Numerical simulation of fluid-structure interaction with the volume penalization method
    Engels, Thomas
    Kolomenskiy, Dmitry
    Schneider, Kai
    Sesterhenn, Joern
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 : 96 - 115
  • [10] The Coupled Volume of Fluid and Brinkman Penalization Methods for Simulation of Incompressible Multiphase Flows
    Sharaborin, Evgenii L.
    Rogozin, Oleg A.
    Kasimov, Aslan R.
    FLUIDS, 2021, 6 (09)