Orlicz norm estimates for eigenvalues of matrices

被引:0
|
作者
Andreas Defant
Mieczysław Mastyło
Carsten Michels
机构
[1] Carl von Ossietzky University of Oldenburg,Fachbereich Mathematik
[2] Polish Academy of Sciences,Faculty of Mathematics and computer Science, A. Mickiewicz University and Institute of Mathematics (Poznań branch)
[3] Carl von Ossietzky University of Oldenburg,Fachbereich Mathematik
来源
关键词
Banach Space; Sequence Space; Banach Lattice; Orlicz Space; Convex Space;
D O I
暂无
中图分类号
学科分类号
摘要
Let φ be a supermultiplicative Orlicz function such that the function\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$t \mapsto \varphi \left( {\sqrt t } \right)$$ \end{document} is equivalent to a convex function. Then each complexn×n matrixT=(τij)i, j satisfies the following eigenvalue estimate:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left\| {\left( {\lambda _i \left( T \right)} \right)_{i = 1}^n } \right\|_{\ell _\varphi } \leqslant C\left\| ( \right\|\left( {\tau _{ij} } \right)_{i = 1}^n \left\| {_{_{\ell _{\varphi *} } } )_{j = 1}^n } \right\|\ell _{\bar \varphi } $$ \end{document}. Here, ϕ* stands for Young’s conjugate function of φ, ϕ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\bar \varphi $$ \end{document} is the minimal submultiplicative function dominating φ andC>0 a constant depending only on φ. For the power function φ(t)=tp,p≥2 this is a celebrated result of Johnson, König, Maurey and Retherford from 1979. In this paper we prove the above result within a more general theory of related estimates.
引用
收藏
页码:45 / 59
页数:14
相关论文
共 50 条
  • [1] Orlicz norm estimates for eigenvalues of matrices
    Defant, A
    Mastylo, M
    Michels, C
    ISRAEL JOURNAL OF MATHEMATICS, 2002, 132 (1) : 45 - 59
  • [2] Estimates for the eigenvalues of matrices
    Alidema, RI
    Fillipov, AF
    MATHEMATICAL NOTES, 2006, 79 (1-2) : 157 - 164
  • [3] Estimates for the Eigenvalues of Matrices
    R. I. Alidema
    A. F. Fillipov
    Mathematical Notes, 2006, 79 : 157 - 164
  • [4] Estimates for eigenvalues of stochastic matrices
    Jia-li Zhou
    Min Wu
    Shu-you Zhang
    Guo-ping Yang
    Acta Mathematicae Applicatae Sinica, English Series, 2011, 27 : 503 - 508
  • [5] Estimates for Eigenvalues of Stochastic Matrices
    Jia-li Zhou 1
    Acta Mathematicae Applicatae Sinica(English Series), 2011, 27 (03) : 503 - 508
  • [6] Estimates for eigenvalues of stochastic matrices
    Zhou, Jia-li
    Wu, Min
    Zhang, Shu-you
    Yang, Guo-ping
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2011, 27 (03): : 503 - 508
  • [7] NORM ESTIMATES FOR RANDOM POLYNOMIALS ON THE SCALE OF ORLICZ SPACES
    Defant, Andreas
    Mastylo, Mieczyslaw
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2017, 11 (02): : 335 - 347
  • [8] NORM ESTIMATES FOR INVERSES OF VANDERMONDE MATRICES
    GAUTSCHI, W
    NUMERISCHE MATHEMATIK, 1975, 23 (04) : 337 - 347
  • [9] ERROR ESTIMATES FOR REAL EIGENVALUES AND EIGENVECTORS OF MATRICES
    KRAWCZYK, R
    COMPUTING, 1969, 4 (04) : 281 - &
  • [10] ESTIMATES FOR THE EIGENVALUES OF THE JORDAN PRODUCT OF HERMITIAN MATRICES
    ALIKAKOS, N
    BATES, PW
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1984, 57 (FEB) : 41 - 56