Type-I intermittency with discontinuous reinjection probability density in a truncation model of the derivative nonlinear Schrödinger equation

被引:0
|
作者
Gustavo Krause
Sergio Elaskar
Ezequiel del Río
机构
[1] Universidad Nacional de Córdoba – CONICET,Facultad de Ciencias Exactas, Físicas y Naturales
[2] Universidad Politécnica de Madrid,Departamento de Física Aplicada; ETSIA
来源
Nonlinear Dynamics | 2014年 / 77卷
关键词
Intermittency; Discontinuous reinjection probability density; Characteristic relation; DNLS equation;
D O I
暂无
中图分类号
学科分类号
摘要
In previous papers, the type-I intermittent phenomenon with continuous reinjection probability density (RPD) has been extensively studied. However, in this paper type-I intermittency considering discontinuous RPD function in one-dimensional maps is analyzed. To carry out the present study the analytic approximation presented by del Río and Elaskar (Int. J. Bifurc. Chaos 20:1185–1191, 2010) and Elaskar et al. (Physica A. 390:2759–2768, 2011) is extended to consider discontinuous RPD functions. The results of this analysis show that the characteristic relation only depends on the position of the lower bound of reinjection (LBR), therefore for the LBR below the tangent point the relation l∝ε-1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\langle l \right\rangle \propto \varepsilon ^{-1/2}$$\end{document}, where ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} is the control parameter, remains robust regardless the form of the RPD, although the average of the laminar phases l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\langle l \right\rangle $$\end{document} can change. Finally, the study of discontinuous RPD for type-I intermittency which occurs in a three-wave truncation model for the derivative nonlinear Schrodinger equation is presented. In all tests the theoretical results properly verify the numerical data.
引用
收藏
页码:455 / 466
页数:11
相关论文
共 13 条