Coloring Non-uniform Hypergraphs Without Short Cycles

被引:0
|
作者
Dmitry A. Shabanov
机构
[1] Lomonosov Moscow State University,Department of Probability Theory, Faculty of Mechanics and Mathematics
[2] Moscow Institute of Physics and Technology,Department of Discrete Mathematics, Faculty of Innovations and High Technology
来源
Graphs and Combinatorics | 2014年 / 30卷
关键词
Non-uniform hypergraphs; Chromatic number; Erdős–Lovász problem; Hypergraphs with large girth; 05C15; 05C65; 05D40;
D O I
暂无
中图分类号
学科分类号
摘要
The work deals with a generalization of Erdős–Lovász problem concerning colorings of non-uniform hypergraphs. Let H  = (V, E) be a hypergraph and let fr(H)=∑e∈Er1-|e|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{f_r(H)=\sum\limits_{e \in E}r^{1-|e|}}}$$\end{document} for some r ≥ 2. Erdős and Lovász proposed to find the value f (n) equal to the minimum possible value of f2(H) where H is 3-chromatic hypergraph with minimum edge-cardinality n. In the paper we study similar problem for the class of hypergraphs with large girth. We prove that if H is a hypergraph with minimum edge-cardinality n ≥ 3 and girth at least 4, satisfying the inequality fr(H)≤12nlnn2/3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_r(H) \leq \frac{1}{2}\, \left(\frac{n}{{\rm ln}\, n}\right)^{2/3},$$\end{document}then H is r -colorable. Our result improves previous lower bounds for f (n) in the class of hypergraphs without 2- and 3-cycles.
引用
收藏
页码:1249 / 1260
页数:11
相关论文
共 50 条
  • [1] Coloring Non-uniform Hypergraphs Without Short Cycles
    Shabanov, Dmitry A.
    GRAPHS AND COMBINATORICS, 2014, 30 (05) : 1249 - 1260
  • [2] Berge cycles in non-uniform hypergraphs
    Furedi, Zoltan
    Kostochka, Alexandr
    Luo, Ruth
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (03): : 1 - 13
  • [3] Non-Uniform Hypergraphs
    Shirdel, G. H.
    Mortezaee, A.
    Golpar-Raboky, E.
    IRANIAN JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 11 (03): : 161 - 177
  • [4] Covering non-uniform hypergraphs
    Boros, E
    Caro, Y
    Füredi, Z
    Yuster, R
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 82 (02) : 270 - 284
  • [5] Coloring non-uniform hypergraphs: A new algorithmic approach to the general Lovasz Local Lemma
    Czumaj, A
    Scheideler, C
    PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2000, : 30 - 39
  • [6] Non-uniform Evolving Hypergraphs and Weighted Evolving Hypergraphs
    Guo, Jin-Li
    Zhu, Xin-Yun
    Suo, Qi
    Forrest, Jeffrey
    SCIENTIFIC REPORTS, 2016, 6
  • [7] Non-uniform Evolving Hypergraphs and Weighted Evolving Hypergraphs
    Jin-Li Guo
    Xin-Yun Zhu
    Qi Suo
    Jeffrey Forrest
    Scientific Reports, 6
  • [8] Subgraphs in Non-uniform Random Hypergraphs
    Dewar, Megan
    Healy, John
    Perez-Gimenez, Xavier
    Pralat, Pawel
    Proos, John
    Reiniger, Benjamin
    Ternovsky, Kirill
    ALGORITHMS AND MODELS FOR THE WEB GRAPH, WAW 2016, 2016, 10088 : 140 - 151
  • [9] Turan problems on Non-uniform Hypergraphs
    Johnston, J. Travis
    Lu, Linyuan
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (04):
  • [10] COLORING GRAPHS WITHOUT SHORT NON-BOUNDING CYCLES
    FISK, S
    MOHAR, B
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1994, 60 (02) : 268 - 276