Real-World super-resolution under the guidance of optimal transport

被引:0
|
作者
Zezeng Li
Na Lei
Ji Shi
Hao Xue
机构
[1] Dalian University of Technology,School of Software
[2] Dalian University of Technology,International School of Information and Software
[3] Capital Normal University,Academy for Multidisciplinary Studies
[4] Capital Normal University,School of Mathematical Sciences
来源
关键词
Super-resolution; Optimal transport; Real-World;
D O I
暂无
中图分类号
学科分类号
摘要
In the real world, lacking paired training data makes image super-resolution (SR) be a tricky unsupervised task. Existing methods are mainly train models on synthetic datasets and achieve the tradeoff between detail restoration and noise artifact suppression based on a priori knowledge, which indicate it cannot be optimal in both aspects. To solve this problem, we propose OTSR, a single image super-resolution method based on optimal transport theory. OTSR aims to find the optimal solution to the ill-posed SR problem, so that the model can restore high-frequency detail accurately and also suppress noise and artifacts well. Our method consists of three stages: real-world images degradation estimation, LR images generation and model optimization based on quadratic Wasserstein distance. Through the first two stages, the problem of no paired image is solved. In the third stage, under the guidance of optimal transport theory, the optimal mapping from LR to HR image space is learned. Extensive experiments show that our method outperforms the state-of-the-art methods in terms of both detail repair and noise artifact suppression. The source code is available at https://github.com/cognaclee/OTSR.
引用
收藏
相关论文
共 50 条
  • [1] Real-World super-resolution under the guidance of optimal transport
    Li, Zezeng
    Lei, Na
    Shi, Ji
    Xue, Hao
    MACHINE VISION AND APPLICATIONS, 2022, 33 (03)
  • [2] Real-World Thermal Image Super-Resolution
    Allahham, Moaaz
    Aakerberg, Andreas
    Nasrollahi, Kamal
    Moeslund, Thomas B.
    ADVANCES IN VISUAL COMPUTING (ISVC 2021), PT I, 2021, 13017 : 3 - 14
  • [3] Unsupervised Learning for Real-World Super-Resolution
    Lugmayr, Andreas
    Danelljan, Martin
    Timofte, Radu
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 3408 - 3416
  • [4] Frequency Separation for Real-World Super-Resolution
    Fritsche, Manuel
    Gu, Shuhang
    Timofte, Radu
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 3599 - 3608
  • [5] Real-World Super-Resolution with Residual Consistency
    Saritas, Erdi
    Ekenel, Hazim Kemal
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [6] Semantic Segmentation Guided Real-World Super-Resolution
    Aakerberg, Andreas
    Johansen, Anders S.
    Nasrollahi, Kamal
    Moeslund, Thomas B.
    2022 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS (WACVW 2022), 2022, : 449 - 458
  • [7] StarSRGAN: Improving Real-World Blind Super-Resolution
    Vo K.D.
    Bui L.T.
    Computer Science Research Notes, 2023, 31 (1-2): : 62 - 72
  • [8] Investigating Tradeoffs in Real-World Video Super-Resolution
    Chan, Kelvin C. K.
    Zhou, Shangchen
    Xu, Xiangyu
    Loy, Chen Change
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 5952 - 5961
  • [9] Frequency Generation for Real-World Image Super-Resolution
    Guan, Wenxue
    Li, Haobo
    Xu, Dawei
    Liu, Jiaxin
    Gong, Shenghua
    Liu, Jun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (08) : 7029 - 7040
  • [10] Learning Degradation for Real-World Face Super-Resolution
    Chen, Jin
    Chen, Jun
    Wang, Xiaofen
    Xu, Dongshu
    Liang, Chao
    Han, Zhen
    ADVANCES IN COMPUTER GRAPHICS, CGI 2023, PT II, 2024, 14496 : 120 - 131