Stochastic Control of Memory Mean-Field Processes

被引:0
|
作者
Nacira Agram
Bernt Øksendal
机构
[1] University of Oslo,Department of Mathematics
来源
关键词
Mean-field stochastic differential equation; Law process; Memory; Path segment spaces; Random probability measures; Stochastic maximum principle; Operator-valued absde; Mean–variance problem; 60H05; 60H20; 60J75; 93E20; 91G80; 91B70;
D O I
暂无
中图分类号
学科分类号
摘要
By a memory mean-field process we mean the solution X(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X(\cdot )$$\end{document} of a stochastic mean-field equation involving not just the current state X(t) and its law L(X(t))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}(X(t))$$\end{document} at time t,  but also the state values X(s) and its law L(X(s))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}(X(s))$$\end{document} at some previous times s<t.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s<t.$$\end{document} Our purpose is to study stochastic control problems of memory mean-field processes. We consider the space M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}$$\end{document} of measures on R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}$$\end{document} with the norm ||·||M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|| \cdot ||_{\mathcal {M}}$$\end{document} introduced by Agram and Øksendal (Model uncertainty stochastic mean-field control. arXiv:1611.01385v5, [2]), and prove the existence and uniqueness of solutions of memory mean-field stochastic functional differential equations. We prove two stochastic maximum principles, one sufficient (a verification theorem) and one necessary, both under partial information. The corresponding equations for the adjoint variables are a pair of (time-advanced backward stochastic differential equations (absdes), one of them with values in the space of bounded linear functionals on path segment spaces. As an application of our methods, we solve a memory mean–variance problem as well as a linear–quadratic problem of a memory process.
引用
收藏
页码:181 / 204
页数:23
相关论文
共 50 条
  • [1] Stochastic Control of Memory Mean-Field Processes (vol 79, pg 181, 2019)
    Agram, Nacira
    Oksendal, Bernt
    APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 79 (01): : 205 - 206
  • [2] SINGULAR CONTROL OPTIMAL STOPPING OF MEMORY MEAN-FIELD PROCESSES
    Agram, Nacira
    Bachouch, Achref
    Oksendal, Bernt
    Proske, Frank
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (01) : 450 - 468
  • [3] Mean-field stochastic control with elephant memory in finite and infinite time horizon
    Agram, Nacira
    Oksendal, Bernt
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2019, 91 (07) : 1041 - 1066
  • [4] Model uncertainty stochastic mean-field control
    Agram, Nacira
    Oksendal, Bernt
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2019, 37 (01) : 36 - 56
  • [5] On the relaxed mean-field stochastic control problem
    Bahlali, Khaled
    Mezerdi, Meriem
    Mezerdi, Brahim
    STOCHASTICS AND DYNAMICS, 2018, 18 (03)
  • [6] Memory-Limited Partially Observable Stochastic Control and Its Mean-Field Control Approach
    Tottori, Takehiro
    Kobayashi, Tetsuya J.
    ENTROPY, 2022, 24 (11)
  • [7] A MEAN-FIELD STOCHASTIC CONTROL PROBLEM WITH PARTIAL OBSERVATIONS
    Buckdahn, Rainer
    Li, Juan
    Ma, Jin
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (05): : 3201 - 3245
  • [8] MEAN-FIELD APPROXIMATIONS FOR STOCHASTIC POPULATION PROCESSES WITH HETEROGENEOUS INTERACTIONS
    Sridhar, Anirudh
    Kar, Soummya
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2023, 61 (06) : 3442 - 3466
  • [9] Recursive tree processes and the mean-field limit of stochastic flows
    Mach, Tibor
    Sturm, Anja
    Swart, Jan M.
    ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25 : 1 - 63
  • [10] Stochastic Control for Mean-Field Stochastic Partial Differential Equations with Jumps
    Roxana Dumitrescu
    Bernt Øksendal
    Agnès Sulem
    Journal of Optimization Theory and Applications, 2018, 176 : 559 - 584