Topological navigation graph framework

被引:0
|
作者
Povilas Daniušis
Shubham Juneja
Lukas Valatka
Linas Petkevičius
机构
[1] Neurotechnology,
来源
Autonomous Robots | 2021年 / 45卷
关键词
Goal-directed autonomous navigation; Topological navigation; Imitation learning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:633 / 646
页数:13
相关论文
共 50 条
  • [1] Topological navigation graph framework
    Daniusis, Povilas
    Juneja, Shubham
    Valatka, Lukas
    Petkevicius, Linas
    AUTONOMOUS ROBOTS, 2021, 45 (05) : 633 - 646
  • [2] Topological Semantic Graph Memory for Image-Goal Navigation
    Kim, Nuri
    Kwon, Obin
    Yoo, Hwiyeon
    Choi, Yunho
    Park, Jeongho
    Oh, Songhwai
    CONFERENCE ON ROBOT LEARNING, VOL 205, 2022, 205 : 393 - 402
  • [3] Inertial navigation framework for multimodal underwater Graph SLAM
    Vial, Pau
    Castillon, Miguel
    Palomeras, Narcis
    Carreras, Marc
    Ridao, Pere
    OCEANS 2023 - LIMERICK, 2023,
  • [4] TopoDetect: Framework for topological features detection in graph embeddings
    Haddad, Maroun
    Bouguessa, Mohamed
    SOFTWARE IMPACTS, 2021, 10
  • [5] Oceanscape: A graph-based framework for autonomous coastal navigation
    Fagerhaug, Eirik S.
    Bye, Robin T.
    Osen, Ottar L.
    Hatledal, Lars Ivar
    OCEAN ENGINEERING, 2025, 320
  • [6] A robust factor graph framework for navigation on PDR/magnetic field integration
    Li, Zehua
    Shang, Junna
    Liao, Wei
    MEASUREMENT, 2025, 245
  • [7] LIDAR Signature Based Node Detection and Classification in Graph Topological Maps for Indoor Navigation
    Lafuente-Arroyo, Sergio
    Maldonado-Bascon, Saturnino
    Javier Lopez-Sastre, Roberto
    Jesus Molina-Cantero, Alberto
    Martin-Martin, Pilar
    PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2022), 2022, 13256 : 390 - 401
  • [8] A flexible optimization framework for district systems based on topological graph and hybrid models
    Manganini, Giorgio
    Riverso, Stefano
    Kouramas, Kostantinos
    JOURNAL OF PROCESS CONTROL, 2021, 107 : 27 - 36
  • [9] Topological operators on the topological graph of frontiers
    Ahronovitz, E
    Fiorio, C
    Glaize, S
    DISCRETE GEOMETRY FOR COMPUTER IMAGERY, 1999, 1568 : 207 - 217
  • [10] A topological net structure and a topological graph
    Kofler, H
    FOURTEENTH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1 AND 2, 1998, : 1449 - 1454