Wavelet representation of singular integral operators

被引:0
|
作者
Francesco Di Plinio
Brett D. Wick
Tyler Williams
机构
[1] Dipartimento di Matematica e Applicazioni Università degli Studi di Napoli “Federico II” Via Cintia,Department of Mathematics
[2] Washington University in Saint Louis,undefined
来源
Mathematische Annalen | 2023年 / 386卷
关键词
Primary 42B20; Secondary 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
This article develops a novel approach to the representation of singular integral operators of Calderón–Zygmund type in terms of continuous model operators, in both the classical and the bi-parametric setting. The representation is realized as a finite sum of averages of wavelet projections of either cancellative or noncancellative type, which are themselves Calderón–Zygmund operators. Both properties are out of reach for the established dyadic-probabilistic technique. Unlike their dyadic counterparts, our representation reflects the additional kernel smoothness of the operator being analyzed. Our representation formulas lead naturally to a new family of T(1) theorems on weighted Sobolev spaces whose smoothness index is naturally related to kernel smoothness. In the one parameter case, we obtain the Sobolev space analogue of the A2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_2$$\end{document} theorem; that is, sharp dependence of the Sobolev norm of T on the weight characteristic is obtained in the full range of exponents. In the bi-parametric setting, where local average sparse domination is not generally available, we obtain quantitative Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_p$$\end{document} estimates which are best known, and sharp in the range max{p,p′}≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \{p,p'\}\ge 3$$\end{document} for the fully cancellative case.
引用
收藏
页码:1829 / 1889
页数:60
相关论文
共 50 条