Symmetry and monotonicity of positive solutions to Schrödinger systems with fractional p-Laplacians

被引:0
|
作者
Ling-wei Ma
Zhen-qiu Zhang
机构
[1] Tianjin Normal University,School of Mathematical Sciences
[2] Nankai University,School of Mathematical Sciences and LPMC
关键词
fractional ; -Laplacian; Schrödinger systems; direct method of moving planes; radial symmetry; monotonicity; nonexistence; 35R11; 35B06; 35A01;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first establish narrow region principle and decay at infinity theorems to extend the direct method of moving planes for general fractional p-Laplacian systems. By virtue of this method, we investigate the qualitative properties of positive solutions for the following Schrödinger system with fractional p-Laplacian {(−Δ)psu+aup−1=f(uv)(−Δ)ptv+bvp−1=g(uv)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {\matrix{{( - \Delta )_p^su + a{u^{p - 1}} = f(u,v),} \cr {( - \Delta )_p^tv + b{v^{p - 1}} = g(u,v),} \cr } } \right.$$\end{document}
引用
收藏
页码:52 / 72
页数:20
相关论文
共 50 条
  • [1] Symmetry and monotonicity of positive solutions to Schr?dinger systems with fractional p-Laplacians
    MA Ling-wei
    ZHANG Zhen-qiu
    AppliedMathematics:AJournalofChineseUniversities, 2022, 37 (01) : 52 - 72
  • [2] Symmetry and monotonicity of positive solutions to Schrodinger systems with fractional p-Laplacians
    Ma Ling-wei
    Zhang Zhen-qiu
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2022, 37 (01) : 52 - 72
  • [3] POSITIVE SOLUTIONS TO HYBRID SCHR?DINGER EQUATION WITH NORMAL AND FRACTIONAL LAPLACIANS
    Xiaoqing Wen
    Lina Wang
    Hongwei Yin
    AnnalsofAppliedMathematics, 2015, 31 (04) : 446 - 451
  • [4] EIGENVALUES FOR SYSTEMS OF FRACTIONAL p-LAPLACIANS
    Del Pezzo, Leandro M.
    Rossi, Julio D.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (04) : 1077 - 1104
  • [5] Schrödinger Equations with Fractional Laplacians
    Y. Hu
    G. Kallianpur
    Applied Mathematics & Optimization, 2000, 42 : 281 - 290
  • [6] Symmetry and Monotonicity of a Nonlinear Schrödinger Equation Involving the Fractional Laplacian
    Li Yuan
    Ping Li
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 4109 - 4125
  • [7] Monotonicity and symmetry of solutions to fractional p-laplacian systems
    Zhizhen He
    Feiyao Ma
    Weifeng Wo
    Journal of Pseudo-Differential Operators and Applications, 2022, 13
  • [8] Monotonicity and symmetry of solutions to fractional p-laplacian systems
    He, Zhizhen
    Ma, Feiyao
    Wo, Weifeng
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2022, 13 (04)
  • [9] Monotonicity and symmetry of positive solutions to fractional p-Laplacian equation
    Dai, Wei
    Liu, Zhao
    Wang, Pengyan
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (06)
  • [10] Existence and concentration of positive solutions for p-fractional Schrödinger equations
    Vincenzo Ambrosio
    Giovany M. Figueiredo
    Teresa Isernia
    Annali di Matematica Pura ed Applicata (1923 -), 2020, 199 : 317 - 344