On Γ-convergence of quadratic functionals in the plane

被引:0
|
作者
Capozzoli C. [1 ]
Carozza M. [2 ]
机构
[1] Dipartimento di Matematica e Applicazioni Renato Caccioppoli, Università di Napoli Federico II, Napoli 80126, Via Cintia
[2] Dipartimento Pe. Me. Is., Università Del Sannio, Benevento 82100, Piazza Arechi II
关键词
Γ-Convergence; Beltrami operators; Finite distortion mappings;
D O I
10.1007/s11587-008-0034-9
中图分类号
学科分类号
摘要
In this paper, we prove that if a sequence of homeomorphisms fjΩ → Ω , with Ω,Ω bounded planar domains, of Sobolev space W1,1locΩ, R2 has uniformly equibounded distortions in EXP(Ω) and weakly converges to f in W1,1locΩ, 2 then the matrices A(x, f j ) of the corresponding Laplace-Beltrami operators Γ-converge in the Orlicz-Sobolev space W1,QΩ), where Q(t) = t 2log(e + t), to the matrix A(x, f) of the Laplace-Beltrami operator associated to f. © 2008 Università degli Studi di Napoli "Federico II".
引用
收藏
页码:283 / 300
页数:17
相关论文
共 50 条