Localised solid-state nanopore fabrication via controlled breakdown using on-chip electrodes

被引:9
|
作者
Fried, Jasper P. [1 ,2 ]
Swett, Jacob L. [1 ]
Nadappuram, Binoy Paulose [3 ]
Fedosyuk, Aleksandra [3 ]
Gee, Alex [1 ]
Dyck, Ondrej E. [4 ]
Yates, James R. [5 ]
Ivanov, Aleksandar P. [3 ]
Edel, Joshua B. [3 ]
Mol, Jan A. [6 ]
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[2] Univ New South Wales, Sch Chem, Sydney, NSW 2052, Australia
[3] Imperial Coll London, Dept Chem, London W12 0BZ, England
[4] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA
[5] Antonio Xavier Univ Nova Lisboa, Inst Tecnol Quim & Biol, Av Republ, P-2780157 Oeiras, Portugal
[6] Queen Mary Univ London, Sch Phys & Astron, London E1 4NS, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
solid-state nanopores; dielectric breakdown; nanofabrication; single-molecule sensing; nanopore arrays; DNA; NOISE;
D O I
10.1007/s12274-022-4535-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Controlled breakdown has recently emerged as a highly accessible technique to fabricate solid-state nanopores. However, in its most common form, controlled breakdown creates a single nanopore at an arbitrary location in the membrane. Here, we introduce a new strategy whereby breakdown is performed by applying the electric field between an on-chip electrode and an electrolyte solution in contact with the opposite side of the membrane. We demonstrate two advantages of this method. First, we can independently fabricate multiple nanopores at given positions in the membrane by localising the applied field to the electrode. Second, we can create nanopores that are self-aligned with complementary nanoelectrodes by applying voltages to the on-chip electrodes to locally heat the membrane during controlled breakdown. This new controlled breakdown method provides a path towards the affordable, rapid, and automatable fabrication of arrays of nanopores self-aligned with complementary on-chip nanostructures.
引用
收藏
页码:9881 / 9889
页数:9
相关论文
共 50 条
  • [1] Solid-state nanopore fabrication by automated controlled breakdown
    Waugh, Matthew
    Briggs, Kyle
    Gunn, Dylan
    Gibeault, Mathieu
    King, Simon
    Ingram, Quinn
    Jimenez, Aura Melissa
    Berryman, Samuel
    Lomovtsev, Dmytro
    Andrzejewski, Lukasz
    Tabard-Cossa, Vincent
    NATURE PROTOCOLS, 2020, 15 (01) : 122 - 143
  • [2] Solid-state nanopore fabrication by automated controlled breakdown
    Matthew Waugh
    Kyle Briggs
    Dylan Gunn
    Mathieu Gibeault
    Simon King
    Quinn Ingram
    Aura Melissa Jimenez
    Samuel Berryman
    Dmytro Lomovtsev
    Lukasz Andrzejewski
    Vincent Tabard-Cossa
    Nature Protocols, 2020, 15 : 122 - 143
  • [3] Solid-state nanopore fabrication in LiCl by controlled dielectric breakdown
    Bello, Julian
    Shim, Jiwook
    BIOMEDICAL MICRODEVICES, 2018, 20 (02)
  • [4] Solid-state nanopore fabrication in LiCl by controlled dielectric breakdown
    Julian Bello
    Jiwook Shim
    Biomedical Microdevices, 2018, 20
  • [5] Optically Assisted Localization of Solid-State Nanopore during Controlled Breakdown Fabrication
    Roshan, Kamyar Akbari
    Guan, Weihua
    BIOPHYSICAL JOURNAL, 2019, 116 (03) : 293A - 293A
  • [6] On-chip patch-clamp sensor for solid-state nanopore applications
    Kim, J.
    Pedrotti, K. D.
    Dunbar, W. B.
    ELECTRONICS LETTERS, 2011, 47 (15) : 844 - U1924
  • [7] High fidelity moving Z-score based controlled breakdown fabrication of solid-state nanopore
    Roshan, Kamyar Akbari
    Tang, Zifan
    Guan, Weihua
    NANOTECHNOLOGY, 2019, 30 (09)
  • [8] Solid-state nanopore localization by controlled breakdown of selectively thinned membranes
    Carlsen, Autumn T.
    Briggs, Kyle
    Hall, Adam R.
    Tabard-Cossa, Vincent
    NANOTECHNOLOGY, 2017, 28 (08)
  • [9] Localized Nanopore Fabrication via Controlled Breakdown
    Ying, Cuifeng
    Ma, Tianji
    Xu, Lei
    Rahmani, Mohsen
    NANOMATERIALS, 2022, 12 (14)
  • [10] In situ solid-state nanopore fabrication
    Fried, Jasper P.
    Swett, Jacob L.
    Nadappuram, Binoy Paulose
    Mol, Jan A.
    Edel, Joshua B.
    Ivanov, Aleksandar P.
    Yates, James R.
    CHEMICAL SOCIETY REVIEWS, 2021, 50 (08) : 4974 - 4992