The angular distributions of differential cross sections for α\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha$$\end{document} + 36\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{36}$$\end{document}Ar elastic and inelastic scattering at Elab\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$E_{\text {lab}}$$\end{document} = 40, 48, and 54 MeV have been examined in terms of the current theoretical approaches. Therefore, the elastic scattering data have been obtained by using three different theoretical approaches, namely the single-folding cluster model, the double-folding model with CDM3Y6 effective interaction, and the phenomenological Woods–Saxon model. The inelastic scattering data have been obtained from coupled-channel calculations with the fitted parameters for elastic scattering. Both elastic and inelastic results have provided a successful description of the experimental data. Finally, the deformation lengths obtained from coupled-channel calculations are found to be consistent with the values determined from electromagnetic measurements and those reported in the previous studies. Also, the potential parameters, cross sections, volume integrals, and χ2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\chi ^{2}$$\end{document} values have been given for each theoretical approach.