Holomorphic Factorization of Determinants of Laplacians using Quasi-Fuchsian Uniformization

被引:0
|
作者
Andrew Mcintyre
Lee-Peng Teo
机构
[1] Bennington College,Faculty of Information Technology
[2] Multimedia University,undefined
[3] Jalan Multimedia,undefined
[4] Cyberjaya,undefined
来源
关键词
Holomorphic factorization; Laplacian; Period matrix; Differentials; Quasi-Fuchsian; 30F60; 30F10; 30F30;
D O I
暂无
中图分类号
学科分类号
摘要
For a quasi-Fuchsian group Γ with ordinary set Ω, and Δn the Laplacian on n-differentials on Γ\Ω, we define a notion of a Bers dual basis \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi_{1},\dotsc,\phi_{2d}$$\end{document} for ker Δn. We prove that det\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta_{n}/\det \langle\phi_{j},\phi_{k}\rangle$$\end{document} , is, up to an anomaly computed by Takhtajan and the second author in (Commun. Math Phys 239(1-2):183–240, 2003), the modulus squared of a holomorphic function F(n), where F(n) is a quasi-Fuchsian analogue of the Selberg zeta function Z(n). This generalizes the D’Hoker–Phong formula det\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta_{n}=c_{g,n}Z(n)$$\end{document} , and is a quasi-Fuchsian counterpart of the result for Schottky groups proved by Takhtajan and the first author in Analysis 16, 1291–1323, 2006.
引用
收藏
页码:41 / 58
页数:17
相关论文
共 50 条