Quasi-projective reduction of toric varieties

被引:0
|
作者
A. A'Campo–Neuen
J. Hausen
机构
[1] Fakultät für Mathematik und Informatik,
[2] Universität Konstanz Fach D197,undefined
[3] D–78457 Konstanz,undefined
[4] Germany e-mail: Annette.ACampo@uni-konstanz.de,undefined
[5] Juergen.Hausen@uni-konstanz.de ,undefined
来源
Mathematische Zeitschrift | 2000年 / 233卷
关键词
Algebraic Variety; Projective Variety; Toric Variety; Projective Reduction; Categorical Quotient;
D O I
暂无
中图分类号
学科分类号
摘要
We define a quasi–projective reduction of a complex algebraic variety X to be a regular map from X to a quasi–projective variety that is universal with respect to regular maps from X to quasi–projective varieties. A toric quasi–projective reduction is the analogous notion in the category of toric varieties. For a given toric variety X we first construct a toric quasi–projective reduction. Then we show that X has a quasi–projective reduction if and only if its toric quasi–projective reduction is surjective. We apply this result to characterize when the action of a subtorus on a quasi–projective toric variety admits a categorical quotient in the category of quasi–projective varieties.
引用
收藏
页码:697 / 708
页数:11
相关论文
共 50 条
  • [1] Quasi-projective reduction of toric varieties
    A'Campo-Neuen, A
    Hausen, J
    MATHEMATISCHE ZEITSCHRIFT, 2000, 233 (04) : 697 - 708
  • [2] A tower of coverings of quasi-projective varieties
    Yeung, Sai-Kee
    ADVANCES IN MATHEMATICS, 2012, 230 (03) : 1196 - 1208
  • [3] LEFSCHETZ THEOREMS ON QUASI-PROJECTIVE VARIETIES
    HAMM, HA
    TRANG, LD
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1985, 113 (02): : 123 - 142
  • [4] Holonomy stability in quasi-projective varieties
    Caro, Daniel
    COMPOSITIO MATHEMATICA, 2011, 147 (06) : 1772 - 1792
  • [5] Algebraic varieties with quasi-projective universal cover
    Claudon, Benoit
    Hoering, Andreas
    Kollar, Janos
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 679 : 207 - 221
  • [6] On the Albanese map for smooth quasi-projective varieties
    Spiess, M
    Szamuely, T
    MATHEMATISCHE ANNALEN, 2003, 325 (01) : 1 - 17
  • [7] Algebraic cocycles on normal, quasi-projective varieties
    Friedlander, EM
    COMPOSITIO MATHEMATICA, 1998, 110 (02) : 127 - 162
  • [8] On the Albanese map for smooth quasi-projective varieties
    Michael Spieß
    Tamás Szamuely
    Mathematische Annalen, 2003, 325 : 1 - 17
  • [9] COHOMOLOGY JUMP LOCI OF QUASI-PROJECTIVE VARIETIES
    Budur, Nero
    Wang, Botong
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2015, 48 (01): : 227 - 236
  • [10] Characteristic varieties of quasi-projective manifolds and orbifolds
    Bartolo, Enrique Artal
    Cogolludo-Agustin, Jose Ignacio
    Matei, Daniel
    GEOMETRY & TOPOLOGY, 2013, 17 (01) : 273 - 309