Zigzag Persistence

被引:0
|
作者
Gunnar Carlsson
Vin de Silva
机构
[1] Stanford University,Department of Mathematics
[2] Pomona College,Department of Mathematics
关键词
Applied topology; Persistent topology; Quiver representations; 68W30; 55N99;
D O I
暂无
中图分类号
学科分类号
摘要
We describe a new methodology for studying persistence of topological features across a family of spaces or point-cloud data sets, called zigzag persistence. Building on classical results about quiver representations, zigzag persistence generalises the highly successful theory of persistent homology and addresses several situations which are not covered by that theory. In this paper we develop theoretical and algorithmic foundations with a view towards applications in topological statistics.
引用
收藏
页码:367 / 405
页数:38
相关论文
共 50 条
  • [1] Zigzag Persistence
    Carlsson, Gunnar
    de Silva, Vin
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2010, 10 (04) : 367 - 405
  • [2] Algebraic stability of zigzag persistence modules
    Botnan, Magnus Bakke
    Lesnick, Michael
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (06): : 3133 - 3204
  • [3] Parametrized homology via zigzag persistence
    Carlsson, Gunnar
    de Silva, Vin
    Kalisnik, Sara
    Morozov, Dmitriy
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2019, 19 (02): : 657 - 700
  • [4] Discrete Morse Theory for Computing Zigzag Persistence
    Maria, Clement
    Schreiber, Hannah
    DISCRETE & COMPUTATIONAL GEOMETRY, 2024, 71 (02) : 708 - 737
  • [5] Discrete Morse Theory for Computing Zigzag Persistence
    Clément Maria
    Hannah Schreiber
    Discrete & Computational Geometry, 2024, 71 : 708 - 737
  • [6] The reflection distance between zigzag persistence modules
    Elchesen A.
    Mémoli F.
    Journal of Applied and Computational Topology, 2019, 3 (3) : 185 - 219
  • [7] Harder-Narasimhan filtrations and zigzag persistence
    Fersztand, Marc
    Nanda, Vidit
    Tillmann, Ulrike
    ADVANCES IN APPLIED MATHEMATICS, 2024, 153
  • [8] Discrete Morse Theory for Computing Zigzag Persistence
    Maria, Clement
    Schreiber, Hannah
    ALGORITHMS AND DATA STRUCTURES, WADS 2019, 2019, 11646 : 538 - 552
  • [9] Temporal network analysis using zigzag persistence
    Myers, Audun
    Munoz, David
    Khasawneh, Firas A.
    Munch, Elizabeth
    EPJ DATA SCIENCE, 2023, 12 (01)
  • [10] INTERVAL DECOMPOSITION OF INFINITE ZIGZAG PERSISTENCE MODULES
    Botnan, Magnus Bakke
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (08) : 3571 - 3577