Collocation methods for solving linear differential-algebraic boundary value problems

被引:0
|
作者
Ronald Stöver
机构
[1] Universität Bremen,
[2] Fachbereich 3 – Mathematik und Informatik,undefined
[3] Postfach 330 440,undefined
[4] 28334 Bremen,undefined
[5] Germany; e-mail: stoever@math.uni-bremen.de ,undefined
来源
Numerische Mathematik | 2001年 / 88卷
关键词
Mathematics Subject Classification (1991): 65L10;
D O I
暂无
中图分类号
学科分类号
摘要
We consider boundary value problems for linear differential-algebraic equations with variable coefficients with no restriction on the index. A well-known regularisation procedure yields an equivalent index one problem with d differential and a=n-d algebraic equations. Collocation methods based on the regularised BVP approximate the solution x by a continuous piecewise polynomial of degree k and deliver, in particular, consistent approximations at mesh points by using the Radau schemes. Under weak assumptions, the collocation problems are uniquely and stably solvable and, if the unique solution x is sufficiently smooth, convergence of order min {k+1,2k-1} and superconvergence at mesh points of order 2k-1 is shown. Finally, some numerical experiments illustrating these results are presented.
引用
收藏
页码:771 / 795
页数:24
相关论文
共 50 条