Deletion theorem and combinatorics of hyperplane arrangements

被引:0
|
作者
Takuro Abe
机构
[1] Kyushu University,Institute of Mathematics for Industry
来源
Mathematische Annalen | 2019年 / 373卷
关键词
32S22; 52S35;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the deletion theorem of a free arrangement is combinatorial, i.e., whether we can delete a hyperplane from a free arrangement keeping freeness depends only on the intersection lattice. In fact, we give a sufficient and necessary condition for the deletion theorem in terms of characteristic polynomials. As a corollary, we prove that whether a free arrangement has a free filtration is also combinatorial. The proof is based on the result about a minimal set of generators of a logarithmic derivation module of a multiarrangement which satisfies the b2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_2$$\end{document}-equality.
引用
收藏
页码:581 / 595
页数:14
相关论文
共 50 条