On the Interplay Between Electrical Conductivity and Seebeck Coefficient in Ultra-Narrow Silicon Nanowires

被引:0
|
作者
Neophytos Neophytou
Hans Kosina
机构
[1] TU Wien,Institute for Microelectronics
来源
Journal of Electronic Materials | 2012年 / 41卷
关键词
Thermoelectric; electrical conductivity; Seebeck coefficient; tight binding; atomistic; sp; d; s*; Boltzmann transport; silicon; nanowire;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze the effect of low dimensionality on the electrical conductivity (σ) and Seebeck coefficient (S) in ultra-narrow Si nanowires (NWs) by employing atomistic considerations for the electronic structures and linearized Boltzmann transport theory. We show that changes in the geometrical features of the NWs such as diameter and orientation mostly affect σ and S in two ways: (i) the distance of the band edges from the Fermi level (ηF) changes, and (ii) quantum confinement in some cases strongly affects the effective mass of the subbands, which influences the conductivity of the NWs and ηF. Changes in ηF cause exponential changes in σ but linear changes in S. S seems to be only weakly dependent on the curvature of the bands, the strength of the scattering mechanisms, and the shape of the density of states function DOS(E), contrary to current view. Our results indicate that low dimensionality has a stronger influence on σ than on S due to the greater sensitivity of σ to ηF. We identify cases where bandstructure engineering through confinement can improve σ without significantly affecting S, which can result in power factor improvements.
引用
收藏
页码:1305 / 1311
页数:6
相关论文
共 50 条
  • [1] On the Interplay Between Electrical Conductivity and Seebeck Coefficient in Ultra-Narrow Silicon Nanowires
    Neophytou, Neophytos
    Kosina, Hans
    JOURNAL OF ELECTRONIC MATERIALS, 2012, 41 (06) : 1305 - 1311
  • [2] Equation of state of ultra-narrow metallic nanowires
    Pelaez, S.
    Serena, P. A.
    SURFACE SCIENCE, 2007, 601 (18) : 4163 - 4168
  • [3] Electrical conductivity of ultra-thin silicon nanowires
    Rochdi, Nabil
    Tonneau, Didier
    Jandard, Franck
    Dallaporta, Herve
    Safarov, Viatcheslav
    Gautier, Jacques
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2008, 26 (01): : 159 - 163
  • [4] Electrical Resistance and Seebeck Coefficient in PbTe Nanowires
    Sitangshu Bhattacharya
    Ramesh Chandra Mallik
    Journal of Electronic Materials, 2012, 41 : 1421 - 1428
  • [5] Electrical Resistance and Seebeck Coefficient in PbTe Nanowires
    Bhattacharya, Sitangshu
    Mallik, Ramesh Chandra
    JOURNAL OF ELECTRONIC MATERIALS, 2012, 41 (06) : 1421 - 1428
  • [6] Enhanced Seebeck coefficient in silicon nanowires containing dislocations
    Bennett, Nick S.
    Byrne, Daragh
    Cowley, Aidan
    APPLIED PHYSICS LETTERS, 2015, 107 (01)
  • [7] Tuning of the Seebeck Coefficient and the Electrical and Thermal Conductivity of Hybrid Materials Based on Polypyrrole and Bismuth Nanowires
    Hnida, Katarzyna E.
    Pilarczyk, Kacper
    Knutelski, Marcin
    Marzec, Mateusz
    Gajewska, Marta
    Kosonowski, Artur
    Chlebda, Damian
    Lis, Bartlomiej
    Przybylski, Marek
    CHEMPHYSCHEM, 2018, 19 (13) : 1617 - 1626
  • [8] Negative magnetoresistance of ultra-narrow superconducting nanowires in the resistive state
    Arutyunov, K. Yu.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2008, 468 (04): : 272 - 275
  • [9] High-Throughput Measurement of the Seebeck Coefficient and the Electrical Conductivity of Lithographically Patterned Polycrystalline PbTe Nanowires
    Yang, Yongan
    Taggart, David K.
    Cheng, Ming H.
    Hemminger, John C.
    Penner, Reginald M.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (20): : 3004 - 3011
  • [10] ELECTRICAL CONDUCTIVITY AND SEEBECK COEFFICIENT MEASUREMENTS OF SINGLE NANOWIRES BY UTILIZING A MICROFABRICATED THERMOELECTRIC NANOWIRE CHARACTERIZATION PLATFORM
    Wang, Z.
    Adhikari, S. S.
    Kroener, M.
    Kojda, D.
    Mitdank, R.
    Fischer, S. F.
    Toellner, W.
    Nielsch, K.
    Woias, P.
    26TH IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS 2013), 2013, : 508 - 511