New complete orthonormal sets of hyperspherical harmonics and their one-range addition and expansion theorems

被引:0
|
作者
Israfil I. Guseinov
机构
[1] Onsekiz Mart University,Department of Physics, Faculty of Arts and Sciences
来源
关键词
Exponential-type orbitals; Hyperspherical harmonics; Multicenter integrals;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, the complete orthonormal sets of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi ^{\alpha }$$\end{document}- momentum space orbitals (where α=1,0,−1, −2,...) obtained from the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi ^{\alpha }$$\end{document} -ETO in coordinate representation (I.I. Guseinov, J. Mol. Model., 9 (2003) 135) are reduced to the complete orthonormal sets of hyperspherical harmonics (HSH) by means of a Fock transformation of the radial momentum to an angular variable. It is shown that the group of transformations is the four-dimensional rotation group O(4) and, therefore, the HSH presented in this work are the complete orthonormal sets of functions. For these functions, the one-range addition and expansion theorems are obtained. The formulae for HSH and their addition and expansion theorems derived in this work can be used to evaluate the multicenter integrals that arise when exponential-type basis functions are used in atomic and molecular calculations.
引用
收藏
页码:757 / 761
页数:4
相关论文
共 50 条