The Theory and Use of the Quaternion Wavelet Transform

被引:0
|
作者
Eduardo Bayro-Corrochano
机构
[1] Centro de Investigación y de Estudios Avanzados,Computer Science Department, GEOVIS Laboratory
[2] CINVESTAV,undefined
关键词
image processing; real and complex wavelets; multi-resolution analysis; wavelet pyramid; quaternion wavelets; quaternion wavelet pyramid; disparity estimation; optical flow;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents the theory and practicalities of the quaternion wavelet transform (QWT). The major contribution of this work is that it generalizes the real and complex wavelet transforms and derives a quaternionic wavelet pyramid for multi-resolution analysis using the quaternionic phase concept. As a illustration we present an application of the discrete QWT for optical flow estimation. For the estimation of motion through different resolution levels we use a similarity distance evaluated by means of the quaternionic phase concept and a confidence mask. We show that this linear approach is amenable to be extended to a kind of quadratic interpolation.
引用
收藏
页码:19 / 35
页数:16
相关论文
共 50 条
  • [1] The theory and use of the quaternion wavelet transform
    Bayro-Corrochano, E
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2006, 24 (01) : 19 - 35
  • [2] The development of the quaternion wavelet transform
    Fletcher, P.
    Sangwine, S. J.
    SIGNAL PROCESSING, 2017, 136 : 2 - 15
  • [3] Quaternion wavelet transform for image denoising
    Umam, Ahmad Khairul
    Yunus, Mahmud
    INTERNATIONAL CONFERENCE ON MATHEMATICS: PURE, APPLIED AND COMPUTATION, 2018, 974
  • [4] Wavelet Transform and Radon Transform on the Quaternion Heisenberg Group
    Jian Xun HE
    He Ping LIU
    ActaMathematicaSinica(EnglishSeries), 2014, 30 (04) : 619 - 636
  • [5] Wavelet transform and radon transform on the quaternion Heisenberg group
    He, Jian Xun
    Liu, He Ping
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (04) : 619 - 636
  • [6] Wavelet transform and radon transform on the quaternion Heisenberg group
    Jian Xun He
    He Ping Liu
    Acta Mathematica Sinica, English Series, 2014, 30 : 619 - 636
  • [7] The Continuous Quaternion Wavelet Transform on Function Spaces
    Lhamu, Drema
    Singh, Sunil Kumar
    Pandey, C. P.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42
  • [8] Image Compression Using Quaternion Wavelet Transform
    Madhu, C.
    Shankar, E. Anant
    HELIX, 2018, 8 (01): : 2691 - 2695
  • [9] Two-dimensional quaternion wavelet transform
    Bahri, Mawardi
    Ashino, Ryuichi
    Vaillancourt, Remi
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (01) : 10 - 21
  • [10] Linear Canonical Wavelet Transform in Quaternion Domains
    Shah, Firdous A.
    Teali, Aajaz A.
    Tantary, Azhar Y.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2021, 31 (03)