A new heteromaterial planar-gate superjunction insulated-gate bipolar transistor (HG IGBT) is proposed herein. It consists of stepped gate oxides with thickness of 50 nm, 100 nm, and 150 nm. The gate of the proposed structure is constructed using two materials with different workfunction in a triple-segment polygate configuration, connected via metal on the top. The first and last segment consist of the higher-workfunction material (P+\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P^{+}$$\end{document} poly) while the mid segment is formed by a lower-workfunction material (N+\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$N^{+}$$\end{document} poly). The first P+\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P^{+}$$\end{document} poly gate near the emitter with a thin (50 nm) oxide layer enables better control over charge carriers in the channel. In addition, the last P+\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P^{+}$$\end{document} poly gate with a thicker (150 nm) oxide layer results in a reduction of the gate-to-collector capacitance. Technology computer-aided design (TCAD) simulation results show that the proposed device offers a 23%, 58%, and 22% reduction in the area-specific on resistance (Ron·A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_{{\mathrm {on}}} \cdot A$$\end{document}), switching delay, and turn-off time, respectively. Additionally, the device exhibits a 44.4% improvement in the peak transconductance for given breakdown voltage (BV). Furthermore, the off-state energy loss and on-state voltage drop are reduced by 38% and 22%, respectively. It is also observed that the proposed device offers an improved figure of merit (FOM) as compared with the conventional structure.