We introduce the numerical range of a bounded linear operator on a semi-inner-product space. We compute the numerical ranges of some operators on ℓ2p(C)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\ell _{2}^{p}(\mathbb{C})$\end{document}(1≤p<∞)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$(1\le p < \infty )$\end{document} and show that the numerical range of the backward shift on an infinite-dimensional space ℓp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\ell ^{p}$\end{document} is the open unit disc. We define a conjugation and a complex symmetric operator on a semi-inner-product space and discuss complex symmetry in the dual space. We prove some properties of a generalized adjoint of a complex symmetric operator. We also show that the numerical range of the complex conjugation on ℓnp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$\ell _{n}^{p}$\end{document}(n≥2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$(n \ge 2)$\end{document} is the closed unit disc. Finally, we discuss the sequentially essential numerical ranges of operators on a semi-inner-product space.
机构:Univ Tras Os Montes & Alto Douro, Dept Math, P-5000911 Vila Real, Portugal
Bebiano, N
Lemos, R
论文数: 0引用数: 0
h-index: 0
机构:Univ Tras Os Montes & Alto Douro, Dept Math, P-5000911 Vila Real, Portugal
Lemos, R
da Providência, J
论文数: 0引用数: 0
h-index: 0
机构:Univ Tras Os Montes & Alto Douro, Dept Math, P-5000911 Vila Real, Portugal
da Providência, J
Soares, G
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tras Os Montes & Alto Douro, Dept Math, P-5000911 Vila Real, PortugalUniv Tras Os Montes & Alto Douro, Dept Math, P-5000911 Vila Real, Portugal
机构:
Umm Al Qura Univ, Coll First Common Year, Dept Math, POB 14035, Mecca 21955, Saudi Arabia
IPEI Sfax, Dept Math, Sfax, TunisiaUmm Al Qura Univ, Coll First Common Year, Dept Math, POB 14035, Mecca 21955, Saudi Arabia
Baklouti, A.
Mabrouk, M.
论文数: 0引用数: 0
h-index: 0
机构:
Umm Al Qura Univ, Fac Appl Sci, Dept Math Sci, POB 14035, Mecca 21955, Saudi Arabia
Univ Sfax, Fac Sci Sfax, Dept Math, Sfax, TunisiaUmm Al Qura Univ, Coll First Common Year, Dept Math, POB 14035, Mecca 21955, Saudi Arabia