Numerical ranges and complex symmetric operators in semi-inner-product spaces

被引:0
|
作者
Il Ju An
Jaeseong Heo
机构
[1] Kyung Hee University,Department of Applied Mathematics
[2] Hanyang University,Department of Mathematics, Research Institute for Natural Sciences
关键词
Semi-inner-product space; Numerical range; Conjugations; Complex symmetric operators; Generalized adjoint; 46C50; 47A05; 47A12;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the numerical range of a bounded linear operator on a semi-inner-product space. We compute the numerical ranges of some operators on ℓ2p(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{2}^{p}(\mathbb{C})$\end{document}(1≤p<∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(1\le p < \infty )$\end{document} and show that the numerical range of the backward shift on an infinite-dimensional space ℓp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell ^{p}$\end{document} is the open unit disc. We define a conjugation and a complex symmetric operator on a semi-inner-product space and discuss complex symmetry in the dual space. We prove some properties of a generalized adjoint of a complex symmetric operator. We also show that the numerical range of the complex conjugation on ℓnp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ell _{n}^{p}$\end{document}(n≥2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(n \ge 2)$\end{document} is the closed unit disc. Finally, we discuss the sequentially essential numerical ranges of operators on a semi-inner-product space.
引用
收藏
相关论文
共 50 条