Curvature squared invariants in six-dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = (1, 0) supergravity

被引:0
|
作者
Daniel Butter
Joseph Novak
Mehmet Ozkan
Yi Pang
Gabriele Tartaglino-Mazzucchelli
机构
[1] Texas A&M University,George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy
[2] Albert-Einstein-Institut,Max
[3] Istanbul Technical University,Planck
[4] University of Oxford,Institut für Gravitationsphysik
[5] KU Leuven,Department of Physics
[6] University of Bern,Mathematical Institute
关键词
Extended Supersymmetry; Supergravity Models; Superspaces;
D O I
10.1007/JHEP04(2019)013
中图分类号
学科分类号
摘要
We describe the supersymmetric completion of several curvature-squared invariants for N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = (1, 0) supergravity in six dimensions. The construction of the invariants is based on a close interplay between superconformal tensor calculus and recently developed superspace techniques to study general off-shell supergravity-matter couplings. In the case of minimal off-shell Poincaré supergravity based on the dilaton-Weyl multiplet coupled to a linear multiplet as a conformal compensator, we describe off-shell supersymmetric completions for all the three possible purely gravitational curvature-squared terms in six dimensions: Riemann, Ricci, and scalar curvature squared. A linear combination of these invariants describes the off-shell completion of the Gauss-Bonnet term, recently presented in arXiv:1706.09330. We study properties of the Einstein-Gauss-Bonnet super-gravity, which plays a central role in the effective low-energy description of α′-corrected string theory compactified to six dimensions, including a detailed analysis of the spectrum about the AdS3 × S3 solution. We also present a novel locally superconformal invariant based on a higher-derivative action for the linear multiplet. This invariant, which includes gravitational curvature-squared terms, can be defined both coupled to the standard-Weyl or dilaton-Weyl multiplet for conformal supergravity. In the first case, we show how the addition of this invariant to the supersymmetric Einstein-Hilbert term leads to a dynamically generated cosmological constant and non-supersymmetric (A)dS6 solutions. In the dilaton-Weyl multiplet, the new off-shell invariant includes Ricci and scalar curvaturesquared terms and possesses a nontrivial dependence on the dilaton field.
引用
收藏
相关论文
共 50 条