Connections on Naturally Reductive Spaces, Their Dirac Operator and Homogeneous Models in String Theory

被引:0
|
作者
Ilka Agricola
机构
[1] Institut für Reine Mathematik,
[2] Humboldt-Universität zu Berlin,undefined
[3] Sitz: WBC Adlershof,undefined
[4] 10099 Berlin,undefined
[5] Germany. E-mail: agricola@mathematik.hu-berlin.de,undefined
来源
Communications in Mathematical Physics | 2003年 / 232卷
关键词
Manifold; String Theory; Riemannian Manifold; Differential Operator; Symmetric Space;
D O I
暂无
中图分类号
学科分类号
摘要
 Given a reductive homogeneous space M=G/H endowed with a naturally reductive metric, we study the one-parameter family of connections ∇t joining the canonical and the Levi-Civita connection (t=0, 1/2). We show that the Dirac operator Dt corresponding to t=1/3 is the so-called ``cubic'' Dirac operator recently introduced by B. Kostant, and derive the formula for its square for any t, thus generalizing the classical Parthasarathy formula on symmetric spaces. Applications include the existence of a new G-invariant first order differential operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} on spinors and an eigenvalue estimate for the first eigenvalue of D1/3. This geometric situation can be used for constructing Riemannian manifolds which are Ricci flat and admit a parallel spinor with respect to some metric connection ∇ whose torsion T≠ 0 is a 3-form, the geometric model for the common sector of string theories. We present some results about solutions to the string equations and a detailed discussion of a 5-dimensional example.
引用
收藏
页码:535 / 563
页数:28
相关论文
共 39 条