An end-end deep learning framework for lesion segmentation on multi-contrast MR images—an exploratory study in a rat model of traumatic brain injury

被引:0
|
作者
Bhanu Prakash KN
Arvind CS
Abdalla Mohammed
Krishna Kanth Chitta
Xuan Vinh To
Hussein Srour
Fatima Nasrallah
机构
[1] Bioinformatics Institute,Clinical Data Analytics & Radiomics, Cellular Image Informatics
[2] A*STAR,Cellular Image Informatics
[3] Bioinformatics Institute,Queensland Brain Institute
[4] A*STAR Horizontal Technology Centers,Signal and Image Processing Group, Laboratory of Molecular Imaging
[5] The University of Queensland,undefined
[6] Singapore Bioimaging Consortium,undefined
[7] A*STAR,undefined
关键词
Traumatic brain injury; U-Net; Global attention; Self-attention; Deep learning; Segmentation; Controlled cortical impact;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:847 / 865
页数:18
相关论文
共 9 条
  • [1] An end-end deep learning framework for lesion segmentation on multi-contrast MR images-an exploratory study in a rat model of traumatic brain injury
    Prakash, K. N. Bhanu
    Arvind, C. S.
    Mohammed, Abdalla
    Chitta, Krishna Kanth
    To, Xuan Vinh
    Srour, Hussein
    Nasrallah, Fatima
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2023, 61 (03) : 847 - 865
  • [2] A novel end-to-end deep learning framework for skin lesion segmentation and classification in clinical images
    He, X.
    Wang, Y.
    Zhao, S.
    Chen, X.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2022, 142 (08) : S52 - S52
  • [3] Direct synthesis of multi-contrast brain MR images from MR multitasking spatial factors using deep learning
    Qiu, Shihan
    Ma, Sen
    Wang, Lixia
    Chen, Yuhua
    Fan, Zhaoyang
    Moser, Franklin G.
    Maya, Marcel
    Sati, Pascal
    Sicotte, Nancy L.
    Christodoulou, Anthony G.
    Xie, Yibin
    Li, Debiao
    MAGNETIC RESONANCE IN MEDICINE, 2023, 90 (04) : 1672 - 1681
  • [4] A deep learning model to predict traumatic brain injury severity and outcome from MR images
    Yeboah, Dacosta
    Nguyen, Hung
    Hier, Daniel B.
    Olbricht, Gayla R.
    Obafemi-Ajayi, Tayo
    2021 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB), 2021, : 265 - 273
  • [5] Collaborative Multi-Institutional Prostate Lesion Segmentation from MR images Using Deep Federated Learning Framework
    Shiri, Isaac
    Showkatian, Eman
    Mohammadi, Reza
    Razeghi, Behrooz
    Bagheri, Soroush
    Hajianfar, Ghasem
    Salimi, Yazdan
    Amini, Mehdi
    Oghli, Mostafa Ghelich
    Ferdowsi, Sohrab
    Voloshynovskiy, Slava
    Zaidi, Habib
    2022 IEEE NSS/MIC RTSD - IEEE Nuclear Science Symposium, Medical Imaging Conference and Room Temperature Semiconductor Detector Conference, 2022,
  • [6] An optimal deep learning framework for multi-type hemorrhagic lesions detection and quantification in head CT images for traumatic brain injury
    Aniwat Phaphuangwittayakul
    Yi Guo
    Fangli Ying
    Ahmad Yahya Dawod
    Salita Angkurawaranon
    Chaisiri Angkurawaranon
    Applied Intelligence, 2022, 52 : 7320 - 7338
  • [7] An optimal deep learning framework for multi-type hemorrhagic lesions detection and quantification in head CT images for traumatic brain injury
    Phaphuangwittayakul, Aniwat
    Guo, Yi
    Ying, Fangli
    Dawod, Ahmad Yahya
    Angkurawaranon, Salita
    Angkurawaranon, Chaisiri
    APPLIED INTELLIGENCE, 2022, 52 (07) : 7320 - 7338
  • [8] Validation of a deep learning model for traumatic brain injury detection and NIRIS grading on non-contrast CT: a multi-reader study with promising results and opportunities for improvement
    Bin Jiang
    Burak Berksu Ozkara
    Sean Creeden
    Guangming Zhu
    Victoria Y. Ding
    Hui Chen
    Bryan Lanzman
    Dylan Wolman
    Sara Shams
    Austin Trinh
    Ying Li
    Alexander Khalaf
    Jonathon J. Parker
    Casey H. Halpern
    Max Wintermark
    Neuroradiology, 2023, 65 : 1605 - 1617
  • [9] Validation of a deep learning model for traumatic brain injury detection and NIRIS grading on non-contrast CT: a multi-reader study with promising results and opportunities for improvement
    Jiang, Bin
    Ozkara, Burak Berksu
    Creeden, Sean
    Zhu, Guangming
    Ding, Victoria Y.
    Chen, Hui
    Lanzman, Bryan
    Wolman, Dylan
    Shams, Sara
    Trinh, Austin
    Li, Ying
    Khalaf, Alexander
    Parker, Jonathon J.
    Halpern, Casey H.
    Wintermark, Max
    NEURORADIOLOGY, 2023, 65 (11) : 1605 - 1617