Chaotic systems in complex phase space

被引:0
|
作者
Carl M. Bender
Joshua Feinberg
Daniel W. Hook
David J. Weir
机构
[1] Washington University,Department of Physics
[2] University of Haifa at Oranim,Department of Physics
[3] Department of Physics,Blackett Laboratory
[4] Technion,undefined
[5] Imperial College London,undefined
来源
Pramana | 2009年 / 73卷
关键词
symmetry; approach to chaos; kicked rotor; standard map; double pendulum; 05.45.-a; 05.45.Pq; 11.30.Er; 02.30.Hq;
D O I
暂无
中图分类号
学科分类号
摘要
This paper examines numerically the complex classical trajectories of the kicked rotor and the double pendulum. Both of these systems exhibit a transition to chaos, and this feature is studied in complex phase space. Additionally, it is shown that the short-time and long-time behaviours of these two PT-symmetric dynamical models in complex phase space exhibit strong qualitative similarities.
引用
收藏
页码:453 / 470
页数:17
相关论文
共 50 条
  • [1] Chaotic systems in complex phase space
    Bender, Carl M.
    Feinberg, Joshua
    Hook, Daniel W.
    Weir, David J.
    PRAMANA-JOURNAL OF PHYSICS, 2009, 73 (03): : 453 - 470
  • [2] Interference of Quantum Chaotic Systems in Phase Space
    Xu You-Yang
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2013, 60 (04) : 453 - 457
  • [3] Interference of Quantum Chaotic Systems in Phase Space
    徐酉阳
    CommunicationsinTheoreticalPhysics, 2013, 60 (10) : 453 - 457
  • [4] Complex Systems in Phase Space
    Ferry, David K.
    Nedjalkov, Mihail
    Weinbub, Josef
    Ballicchia, Mauro
    Welland, Ian
    Selberherr, Siegfried
    ENTROPY, 2020, 22 (10) : 1 - 19
  • [5] PERIODICITY IN TRAJECTORIES OF CHAOTIC SYSTEMS IN PHASE-SPACE
    SHIBATA, H
    ISHIZAKI, R
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1993, 197 (1-2) : 130 - 143
  • [6] Chaotic diffusion of orbits in systems with divided phase space
    Giordano, CM
    Cincotta, PM
    ASTRONOMY & ASTROPHYSICS, 2004, 423 (02) : 745 - 753
  • [7] MODELING THE PHASE SPACE OF COMPLEX SYSTEMS
    Olemskoi, A. I.
    Borisyuk, V. M.
    Shuda, I. A.
    JOURNAL OF PHYSICAL STUDIES, 2009, 13 (02):
  • [8] Quantum breaking time for chaotic systems with phase space structures
    Iomin, A
    Zaslavsky, GM
    CHAOTIC DYNAMICS AND TRANSPORT IN CLASSICAL AND QUANTUM SYSTEMS, 2005, 182 : 333 - 348
  • [9] Influence of chaotic synchronization on mixing in the phase space of interacting systems
    Astakhov, Sergey V.
    Dvorak, Anton
    Anishchenko, Vadim S.
    CHAOS, 2013, 23 (01)
  • [10] Controlling chaotic systems via phase space reconstruction technique
    Cao, YJ
    Zhang, PX
    Cheng, SJ
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (02): : 467 - 471