Well-posedness of a higher-order Schrödinger–Poisson–Slater system

被引:0
|
作者
Saber Trabelsi
机构
[1] King Fahd University of Petroleum and Minerals,Department of Mathematics & Statistics
来源
关键词
Nonlinear Schrödinger equations; Nonlinear Schrödinger–Poisson equations; 35Q55; 35Q41;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we show the global well-posedness of a higher-order nonlinear Schrödinger equation. Specifically, we consider a system of infinitely many coupled higher-order Schrödinger–Poisson–Slater equations with a self-consistent Coulomb potential. We prove the existence and uniqueness global in time of solutions in L2(R3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}( \mathbb{R}^{3})$\end{document} and in the energy space.
引用
收藏
相关论文
共 50 条
  • [1] Well-posedness of a higher-order Schrodinger-Poisson-Slater system
    Trabelsi, Saber
    BOUNDARY VALUE PROBLEMS, 2018,
  • [2] On the well-posedness for stochastic fourth-order Schrdinger equations
    FANG Dao-yuan ZHANG Lin-zi ZHANG Ting Department of Mathematics
    Applied Mathematics:A Journal of Chinese Universities, 2011, (03) : 307 - 318
  • [3] On the well-posedness for stochastic fourth-order Schrdinger equations
    FANG Daoyuan ZHANG Linzi ZHANG Ting Department of MathematicsZhejiang UniversityHangzhou China
    AppliedMathematics:AJournalofChineseUniversities(SeriesB), 2011, 26 (03) : 307 - 318
  • [4] On the well-posedness for stochastic fourth-order Schrödinger equations
    Dao-yuan Fang
    Lin-zi Zhang
    Ting Zhang
    Applied Mathematics-A Journal of Chinese Universities, 2011, 26 : 307 - 318
  • [5] Global well-posedness for the higher order non-linear Schrödinger equation in modulation spaces
    Carvajal, X.
    Gamboa, P.
    Santos, R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 543 (02)
  • [6] Well-Posedness for the Extended Schrödinger-Benjamin-Ono System
    Linares, Felipe
    Mendez, Argenis J.
    Pilod, Didier
    VIETNAM JOURNAL OF MATHEMATICS, 2024, 52 (04) : 1043 - 1066
  • [7] WELL-POSEDNESS FOR THE EXTENDED SCHRÖDINGER-BENJAMIN-ONO SYSTEM
    Linares, Felipe
    Mendez, Argenis
    Pilod, Didier
    arXiv, 2023,
  • [8] Global well-posedness for nonlinear fourth-order Schrödinger equations
    Xiuyan Peng
    Yi Niu
    Jie Liu
    Mingyou Zhang
    Jihong Shen
    Boundary Value Problems, 2016
  • [9] On the well-posedness of the periodic fractional Schrödinger equation
    Beckett Sanchez
    Oscar Riaño
    Svetlana Roudenko
    Partial Differential Equations and Applications, 2025, 6 (3):
  • [10] Well-posedness for the fourth-order Schrödinger equation with third order derivative nonlinearities
    Hiroyuki Hirayama
    Masahiro Ikeda
    Tomoyuki Tanaka
    Nonlinear Differential Equations and Applications NoDEA, 2021, 28