Existence of classical solutions to a stationary simplified quantum energy-transport model in 1-dimensional space

被引:0
|
作者
Jianwei Dong
Youlin Zhang
Shaohua Cheng
机构
[1] Zhengzhou Institute of Aeronautical Industry Management,Department of Mathematics and Physics
[2] Zhengzhou Institute of Aeronautical Industry Management,Library
关键词
Quantum energy-transport model; Stationary solutions; Existence; 35J40; 35Q40;
D O I
暂无
中图分类号
学科分类号
摘要
The existence of classical solutions to a stationary simplified quantum energy-transport model for semiconductor devices in 1-dimensional space is proved. The model consists of a nonlinear elliptic third-order equation for the electron density, including a temperature derivative, an elliptic nonlinear heat equation for the electron temperature, and the Poisson equation for the electric potential. The proof is based on an exponential variable transformation and the Leray-Schauder fixed-point theorem.
引用
收藏
页码:691 / 696
页数:5
相关论文
共 50 条
  • [1] Existence of Classical Solutions to a Stationary Simplified Quantum Energy-Transport Model in 1-Dimensional Space
    Jianwei DONG
    Youlin ZHANG
    Shaohua CHENG
    Chinese Annals of Mathematics(Series B), 2013, 34 (05) : 691 - 696
  • [2] Existence of classical solutions to a stationary simplified quantum energy-transport model in 1-dimensional space
    Dong, Jianwei
    Zhang, Youlin
    Cheng, Shaohua
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2013, 34 (05) : 691 - 696
  • [3] A simplified quantum energy-transport model for semiconductors
    Juengel, Ansgar
    Milisic, Josipa-Pina
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (02) : 1033 - 1046
  • [4] Existence analysis for a simplified transient energy-transport model for semiconductors
    Juengel, Ansgar
    Pinnau, Rene
    Roehrig, Elisa
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (13) : 1701 - 1712
  • [5] A simplified stationary energy-transport model with temperature-dependent conductivity
    Dong, Jianwei
    Ju, Qiangchang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 35 : 61 - 74
  • [6] SEMICLASSICAL LIMIT IN A SIMPLIFIED QUANTUM ENERGY-TRANSPORT MODEL FOR SEMICONDUCTORS
    Chen, Li
    Chen, Xiu-Qing
    Juengel, Ansgar
    KINETIC AND RELATED MODELS, 2011, 4 (04) : 1049 - 1062
  • [7] An existence and uniqueness result for the stationary energy-transport model in semiconductor theory
    Degond, P.
    Genieys, S.
    Juengel, A.
    Comptes Rendus De L'Academie Des Sciences. Serie I, Mathematique, 324 (08):
  • [8] An existence and uniqueness result for the stationary energy-transport model in semiconductor theory
    Degond, P
    Genieys, S
    Jungel, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (08): : 867 - 872
  • [9] MIXED BOUNDARY CONDITIONS FOR A SIMPLIFIED QUANTUM ENERGY-TRANSPORT MODEL IN MULTI-DIMENSIONAL DOMAINS
    Xu, Xiangsheng
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2017, 15 (03) : 635 - 663
  • [10] Semiclassical limit of a simplified quantum energy-transport model for bipolar semiconductors
    Ra, Sungjin
    Jang, Choljin
    Hong, Jinmyong
    Pyongyang
    APPLICATIONS OF MATHEMATICS, 2024, 69 (04) : 513 - 540