Abelian integrals;
Tangential center problem;
Monodromy;
34M35;
34C08;
14D05;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The tangential center problem was solved by Yu. S. Ilyashenko in the generic case Mat Sbornik (New Series), 78, 120, 3,360–373, (1969). With the aim of having well-understood models of non-generic Hamiltonians, we consider here a family of non-generic Hamiltonians, whose Hamiltonian is of the form F=∏fj\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$F=\prod f_{j}$\end{document}, where fj are real polynomials of degree ≥ 1. For this family, the genericity assumption of transversality at infinity fails and the coincidence of the critical values for different critical points is allowed. We consider some geometric conditions on these polynomials in order to compute the orbit under monodromy of their vanishing cycles. Under those conditions, we provide a solution of the tangential center problem for this family.
机构:
Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City, DF, Mexico
Univ Bourgogne, Inst Math Bourgogne, CNRS, UMR 5584, BP 47870, F-21078 Dijon, FranceUniv Nacl Autonoma Mexico, Inst Matemat, Mexico City, DF, Mexico
机构:
Indiana Univ Purdue Univ, Dept Math Sci, Indianapolis, IN 46202 USA
Polish Acad Sci, Inst Math, PL-00956 Warsaw, PolandIndiana Univ Purdue Univ, Dept Math Sci, Indianapolis, IN 46202 USA
Misiurewicz, Michal
Rodrigues, Ana
论文数: 0引用数: 0
h-index: 0
机构:
Indiana Univ Purdue Univ, Dept Math Sci, Indianapolis, IN 46202 USA
CMUP, P-4169007 Oporto, PortugalIndiana Univ Purdue Univ, Dept Math Sci, Indianapolis, IN 46202 USA