We extend the family of multivariate generalized linear mixed models to include random effects that are generated by smooth densities. We consider two such families of densities, the so-called semi-nonparametric (SNP) and smooth nonparametric (SMNP) densities. Maximum likelihood estimation, under either the SNP or the SMNP densities, is carried out using a Monte Carlo EM algorithm. This algorithm uses rejection sampling and automatically increases the MC sample size as it approaches convergence. In a simulation study we investigate the performance of these two densities in capturing the true underlying shape of the random effects distribution. We also examine the implications of misspecification of the random effects distribution on the estimation of the fixed effects and their standard errors. The impact of the assumed random effects density on the estimation of the random effects themselves is investigated in a simulation study and also in an application to a real data set.
机构:
Univ Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USA
Karcher, P
Wang, YD
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USA
机构:
Wellcome Trust Major Overseas Programme, Oxford Univ Clin Res Unit, Ho Chi Minh City, VietnamWellcome Trust Major Overseas Programme, Oxford Univ Clin Res Unit, Ho Chi Minh City, Vietnam
Anh Nguyen Duc
Wolbers, Marcel
论文数: 0引用数: 0
h-index: 0
机构:
Wellcome Trust Major Overseas Programme, Oxford Univ Clin Res Unit, Ho Chi Minh City, Vietnam
Univ Oxford, Nuffield Dept Med, Ctr Trop Med, Oxford, EnglandWellcome Trust Major Overseas Programme, Oxford Univ Clin Res Unit, Ho Chi Minh City, Vietnam