Efficient processing of k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-hop reachability queries

被引:9
作者
James Cheng
Zechao Shang
Hong Cheng
Haixun Wang
Jeffrey Xu Yu
机构
[1] The Chinese University of Hong Kong,Department of Computer Science and Engineering
[2] The Chinese University of Hong Kong,Department of Systems Engineering and Engineering Management
[3] Microsoft Research Asia,undefined
关键词
Graph indexing; k-hop reachability; Reachability index; Shortest path index; Distance queries;
D O I
10.1007/s00778-013-0346-6
中图分类号
学科分类号
摘要
We study the problem of answering k-hop reachability queries in a directed graph, i.e., whether there exists a directed path of length k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}, from a source query vertex to a target query vertex in the input graph. The problem of k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-hop reachability is a general problem of the classic reachability (where k=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=\infty $$\end{document}). Existing indexes for processing classic reachability queries, as well as for processing shortest path distance queries, are not applicable or not efficient for processing k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-hop reachability queries. We propose an efficient index for processing k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-hop reachability queries. Our experimental results on a wide range of real datasets show that our method is efficient and scalable in terms of both index construction and query processing.
引用
收藏
页码:227 / 252
页数:25
相关论文
共 23 条
[1]  
Cheng J(2012)K-reach: Who is in your small world PVLDB 5 1292-1303
[2]  
Shang Z(2000)Structure of growing networks with preferential linking Phys. Rev. Lett. 85 4633-4636
[3]  
Cheng H(1998)A threshold of ln n for approximating set cover J. ACM 45 634-652
[4]  
Wang H(1990)A compression technique to materialize transitive closure ACM Trans. Database Syst. 15 558-598
[5]  
Yu JX(2011)Distance-constraint reachability computation in uncertain graphs PVLDB 4 551-562
[6]  
Dorogovtsev SN(2011)Path-tree: An efficient reachability indexing scheme for large directed graphs ACM Trans. Database Syst. 36 7-256
[7]  
Mendes JFF(2003)The structure and function of complex networks SIAM Rev. 45 167-346
[8]  
Samukhin AN(1988)An improved algorithm for transitive closure on acyclic digraphs Theor. Comput. Sci. 58 325-284
[9]  
Feige U(2010)Grail: Scalable reachability index for large graphs PVLDB 3 276-undefined
[10]  
Jagadish HV(undefined)undefined undefined undefined undefined-undefined