Bounding convergence rates for Markov chains: An example of the use of computer algebra

被引:0
|
作者
John E. Kolassa
机构
[1] Rutgers University,
来源
Statistics and Computing | 2001年 / 11卷
关键词
Markov chain; Monte Carlo; computer algebra;
D O I
暂无
中图分类号
学科分类号
摘要
Kolassa and Tanner (J. Am. Stat. Assoc. (1994) 89, 697–702) present the Gibbs-Skovgaard algorithm for approximate conditional inference. Kolassa (Ann Statist. (1999), 27, 129–142) gives conditions under which their Markov chain is known to converge. This paper calculates explicity bounds on convergence rates in terms calculable directly from chain transition operators. These results are useful in cases like those considered by Kolassa (1999).
引用
收藏
页码:83 / 87
页数:4
相关论文
共 50 条
  • [1] Bounding convergence rates for Markov chains: An example of the use of computer algebra
    Kolassa, JE
    STATISTICS AND COMPUTING, 2001, 11 (01) : 83 - 87
  • [2] On Convergence Rates for Homogeneous Markov Chains
    A. Yu. Veretennikov
    M. A. Veretennikova
    Doklady Mathematics, 2020, 101 : 12 - 15
  • [3] Polynomial convergence rates of Markov chains
    Jarner, SF
    Roberts, GO
    ANNALS OF APPLIED PROBABILITY, 2002, 12 (01): : 224 - 247
  • [4] On Convergence Rates for Homogeneous Markov Chains
    Veretennikov, A. Yu.
    Veretennikova, M. A.
    DOKLADY MATHEMATICS, 2020, 101 (01) : 12 - 15
  • [5] CONVERGENCE-RATES FOR MARKOV-CHAINS
    ROSENTHAL, JS
    SIAM REVIEW, 1995, 37 (03) : 387 - 405
  • [6] QUANTITATIVE CONVERGENCE RATES FOR SUBGEOMETRIC MARKOV CHAINS
    Andrieu, Christophe
    Fort, Gersende
    Vihola, Matti
    JOURNAL OF APPLIED PROBABILITY, 2015, 52 (02) : 391 - 404
  • [7] Convergence rates of Markov chains on spaces of partitions
    Crane, Harry
    Lalley, Steven P.
    ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18
  • [8] Variance bounding Markov chains
    Roberts, Gareth O.
    Rosenthal, Jeffrey S.
    ANNALS OF APPLIED PROBABILITY, 2008, 18 (03): : 1201 - 1214
  • [9] Subgeometric rates of convergence in Wasserstein distance for Markov chains
    Durmus, Alain
    Fort, Gersende
    Moulines, Eric
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (04): : 1799 - 1822
  • [10] QUANTITATIVE CONVERGENCE RATES OF MARKOV CHAINS: A SIMPLE ACCOUNT
    Rosenthal, Jeffery S.
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2002, 7 : 123 - 128