The boundary behavior of the Bergman kernel function of a kind of Reinhardt domain is studied. Upper and lower bounds for the Bergman kernel function are found at the diagonal points\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$Z,\bar Z$$
\end{document}. Let Ω be the Reinhardt domain\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\Omega = \left\{ {Z = (Z_1 ,Z_2 , \cdots ,Z_n ) \in \mathbb{C}^N ,Z_j \in \mathbb{C}^{N_j } ,j = 1,2. \cdots ,n,| \left\| Z \right\|_a = \sum\limits_{j = 1}^n {\left\| {Z_j } \right\|} _{a_j }^{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{2} }< 1} \right\}$$
\end{document} where\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\alpha _j > 0, j - 1,2, \cdots ,n,N = N_1 + N_2 + \cdots + N_n ,||Z_j ||$$
\end{document} is the standard Euclidean norm in\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathbb{C}^{N_j } ,j = 1,2, \cdots ,n$$
\end{document}j and let\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$K(Z,\overline W )$$
\end{document}be the Bergman kernel function of Ω. Then there exist two positive constantsm andM, and a functionF such that\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$mF(Z,\overline Z ) \leqslant K(Z,\overline Z ) \leqslant MF(Z,\overline Z )$$
\end{document} holds for every Z∈Ω. Here\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$mF(Z,\overline Z ) = ( - r(Z))^{ - N - 1} \prod\limits_{j = 1}^n {( - r(Z) + ||Z_j ||_{a_j }^{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{2} } )^{(1 - a_j )N_j } } $$
\end{document} and r(Z)=||Z||α-1 is the defining function of Ω. The constantsm and M depend only on α = (α1,...,αn) and N1, N2, Nn, not on Z. This result extends some previous known results.