The Bergman kernel function of some Reinhardt domains (II)

被引:0
|
作者
Sheng Gong
Xue’an Zheng
机构
[1] University of Science and Technology of China,Department of Mathematics
[2] Beijing Normal University,Department of Mathematics
来源
关键词
Reinhardt domain; Bergman kernel function; boundary behavior;
D O I
暂无
中图分类号
学科分类号
摘要
The boundary behavior of the Bergman kernel function of a kind of Reinhardt domain is studied. Upper and lower bounds for the Bergman kernel function are found at the diagonal points\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$Z,\bar Z$$ \end{document}. Let Ω be the Reinhardt domain\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\Omega = \left\{ {Z = (Z_1 ,Z_2 , \cdots ,Z_n ) \in \mathbb{C}^N ,Z_j \in \mathbb{C}^{N_j } ,j = 1,2. \cdots ,n,| \left\| Z \right\|_a = \sum\limits_{j = 1}^n {\left\| {Z_j } \right\|} _{a_j }^{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{2} }< 1} \right\}$$ \end{document} where\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\alpha _j > 0, j - 1,2, \cdots ,n,N = N_1 + N_2 + \cdots + N_n ,||Z_j ||$$ \end{document} is the standard Euclidean norm in\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{C}^{N_j } ,j = 1,2, \cdots ,n$$ \end{document}j and let\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$K(Z,\overline W )$$ \end{document}be the Bergman kernel function of Ω. Then there exist two positive constantsm andM, and a functionF such that\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$mF(Z,\overline Z ) \leqslant K(Z,\overline Z ) \leqslant MF(Z,\overline Z )$$ \end{document} holds for every Z∈Ω. Here\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$mF(Z,\overline Z ) = ( - r(Z))^{ - N - 1} \prod\limits_{j = 1}^n {( - r(Z) + ||Z_j ||_{a_j }^{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{2} } )^{(1 - a_j )N_j } } $$ \end{document} and r(Z)=||Z||α-1 is the defining function of Ω. The constantsm and M depend only on α = (α1,...,αn) and N1, N2, Nn, not on Z. This result extends some previous known results.
引用
收藏
页码:458 / 469
页数:11
相关论文
共 50 条