Remarks on the Cwikel–Lieb–Rozenblum and Lieb–Thirring Estimates for Schrödinger Operators on Riemannian Manifolds

被引:0
|
作者
El Maati Ouhabaz
César Poupaud
机构
[1] Université Bordeaux 1,Institut de Mathématiques de Bordeaux (IMB), CNRS UMR 5251, Equipe d’Analyse et Géométrie
[2] MIP/CEREMATH,undefined
来源
关键词
Spectral theory; Schrödinger operator; Cwikel–Lieb–Rozenblum estimates; Lieb–Thirring estimates; Riemannian manifolds; 46B22; 46G10; 44A10; 42A38;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a general complete Riemannian manifold and consider a Schrödinger operator −Δ+V on L2(M). We prove Cwikel–Lieb–Rozenblum as well as Lieb–Thirring type estimates for −Δ+V. These estimates are given in terms of the potential and the heat kernel of the Laplacian on the manifold. Some of our results hold also for Schrödinger operators with complex-valued potentials.
引用
收藏
页码:1449 / 1459
页数:10
相关论文
共 50 条
  • [1] Remarks on the Cwikel-Lieb-Rozenblum and Lieb-Thirring Estimates for Schrodinger Operators on Riemannian Manifolds
    Ouhabaz, El Maati
    Poupaud, Cesar
    ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (03) : 1449 - 1459
  • [2] On a Variational Problem Related to the Cwikel-Lieb-Rozenblum and Lieb-Thirring Inequalities
    Corso, Thiago Carvalho
    Ried, Tobias
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2025, 406 (03)
  • [3] Cwikel-Lieb-Rozenblum type inequalities for Hardy-Schrödinger operator
    Duong, Giao Ky
    Frank, Rupert L.
    Le, Thi Minh Thao
    Nam, Phan Thanh
    Nguyen, Phuoc-Tai
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 190
  • [4] On Lieb-Thirring Inequalities for Schrödinger Operators with Virtual Level
    T. Ekholm
    R. L. Frank
    Communications in Mathematical Physics, 2006, 264 : 725 - 740
  • [5] On an analogue of the Rozenblum-Lieb-Cwikel inequality for the biharmonic operator on a Riemannian manifold
    Levin, D
    MATHEMATICAL RESEARCH LETTERS, 1997, 4 (06) : 855 - 869
  • [6] Cwikel–Lieb–Rozenblum inequalities for the Coulomb Hamiltonian
    Andrés Díaz Selvi
    Analysis and Mathematical Physics, 2024, 14
  • [7] Lieb–Thirring Inequalities for Schrödinger Operators with Complex-valued Potentials
    Rupert L. Frank
    Ari Laptev
    Elliott H. Lieb
    Robert Seiringer
    Letters in Mathematical Physics, 2006, 77 : 309 - 316
  • [8] The Rozenblum-Lieb-Cwikel inequality for Markov generators
    Levin, D
    Solomyak, M
    JOURNAL D ANALYSE MATHEMATIQUE, 1997, 71 (1): : 173 - 193
  • [9] The rozenblum-lieb-cwikel inequality for markov generators
    Daniel Levin
    Michael Solomyak
    Journal d’Analyse Mathématique, 1997, 71 : 173 - 193
  • [10] Cwikel-Lieb-Rozenblum inequalities for the Coulomb Hamiltonian
    Selvi, Andres Diaz
    ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (02)