Spatially Extended Networks with Singular Multi-scale Connectivity Patterns

被引:0
|
作者
Jonathan Touboul
机构
[1] Collège de France/CIRB,The Mathematical Neuroscience Laboratory
[2] and INRIA MYCENAE Team,undefined
来源
关键词
Mean-field limits; Spatially-extended networks; Mean-field equations; Neural fields;
D O I
暂无
中图分类号
学科分类号
摘要
The cortex is a very large network characterized by a complex connectivity including at least two scales: a microscopic scale at which the interconnections are non-specific and very dense, while macroscopic connectivity patterns connecting different regions of the brain at larger scale are extremely sparse. This motivates to analyze the behavior of networks with multiscale coupling, in which a neuron is connected to its v(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v(N)$$\end{document} nearest-neighbors where v(N)=o(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v(N)=o(N)$$\end{document}, and in which the probability of macroscopic connection between two neurons vanishes. These are called singular multi-scale connectivity patterns. We introduce a class of such networks and derive their continuum limit. We show convergence in law and propagation of chaos in the thermodynamic limit. The limit equation obtained is an intricate non-local McKean–Vlasov equation with delays which is universal with respect to the type of micro-circuits and macro-circuits involved.
引用
收藏
页码:546 / 573
页数:27
相关论文
共 50 条
  • [1] Spatially Extended Networks with Singular Multi-scale Connectivity Patterns
    Touboul, Jonathan
    JOURNAL OF STATISTICAL PHYSICS, 2014, 156 (03) : 546 - 573
  • [2] Dissociable multi-scale patterns of development in personalized brain networks
    Adam R. Pines
    Bart Larsen
    Zaixu Cui
    Valerie J. Sydnor
    Maxwell A. Bertolero
    Azeez Adebimpe
    Aaron F. Alexander-Bloch
    Christos Davatzikos
    Damien A. Fair
    Ruben C. Gur
    Raquel E. Gur
    Hongming Li
    Michael P. Milham
    Tyler M. Moore
    Kristin Murtha
    Linden Parkes
    Sharon L. Thompson-Schill
    Sheila Shanmugan
    Russell T. Shinohara
    Sarah M. Weinstein
    Danielle S. Bassett
    Yong Fan
    Theodore D. Satterthwaite
    Nature Communications, 13
  • [3] Dissociable multi-scale patterns of development in personalized brain networks
    Pines, Adam R.
    Larsen, Bart
    Cui, Zaixu
    Sydnor, Valerie J.
    Bertolero, Maxwell A.
    Adebimpe, Azeez
    Alexander-Bloch, Aaron F.
    Davatzikos, Christos
    Fair, Damien A.
    Gur, Ruben C.
    Gur, Raquel E.
    Li, Hongming
    Milham, Michael P.
    Moore, Tyler M.
    Murtha, Kristin
    Parkes, Linden
    Thompson-Schill, Sharon L.
    Shanmugan, Sheila
    Shinohara, Russell T.
    Weinstein, Sarah M.
    Bassett, Danielle S.
    Fan, Yong
    Satterthwaite, Theodore D.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [4] Multi-scale brain networks
    Betzel, Richard F.
    Bassett, Danielle S.
    NEUROIMAGE, 2017, 160 : 73 - 83
  • [5] Spatially extended balanced networks without translationally invariant connectivity
    Ebsch, Christopher
    Rosenbaum, Robert
    JOURNAL OF MATHEMATICAL NEUROSCIENCE, 2020, 10 (01):
  • [6] Multi-Scale Factor Analysis of High-Dimensional Functional Connectivity in Brain Networks
    Ting, Chee-Ming
    Ombao, Hernando
    Salleh, Sh-Hussain
    Abd Latif, Ahmad Zubaidi
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2020, 7 (01): : 449 - 465
  • [7] A Multi-scale & Dynamic Method for Spatially Evolving Flows
    Araya, Guillermo
    Castillo, Luciano
    Meneveau, Charles
    Jansen, Kenneth
    PROGRESS IN WALL TURBULENCE: UNDERSTANDING AND MODELING, 2011, 14 : 219 - +
  • [8] SAMDConv: Spatially Adaptive Multi-scale Dilated Convolution
    Hu, Haigen
    Yu, Chenghan
    Zhou, Qianwei
    Guan, Qiu
    Chen, Qi
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VIII, 2024, 14432 : 460 - 472
  • [9] Influenced Consensus for Multi-Scale Networks
    Foight, Dillon R.
    Mesbahi, Mehran
    2019 AMERICAN CONTROL CONFERENCE (ACC), 2019, : 2753 - 2758
  • [10] An Efficient Algorithm for Computing Multi-scale Connectivity Measures
    Ouzounis, Georgios K.
    MATHEMATICAL MORPHOLOGY AND ITS APPLICATION TO SIGNAL AND IMAGE PROCESSING, 2009, 5720 : 307 - 319