Another Look at the Erdős–Hajnal–Pósa Results on Partitioning Edges of the Rado Graph

被引:0
|
作者
Norbert Sauer
机构
[1] Department of Mathematics,
[2] University of Calgary; 2500 University Dr.,undefined
[3] N.W. Calgary,undefined
[4] Alberta T2N 1N4,undefined
[5] Canada; E-mail: nsauer@math.ucalgary.ca,undefined
来源
Combinatorica | 2001年 / 21卷
关键词
AMS Subject Classification (2000) Classes:  03E02, 05C55, 03C10;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:293 / 308
页数:15
相关论文
共 16 条
  • [1] Another look at the Erdos-Hajnal-Posa results on partitioning edges of the Rado graph
    Sauer, N
    COMBINATORICA, 2001, 21 (02) : 293 - 308
  • [2] The Erdős–Pósa Property For Long Circuits
    Etienne Birmelé
    J. Adrian Bondy
    Bruce A. Reed
    Combinatorica, 2007, 27 : 135 - 145
  • [3] Towards the Erdós-Hajnal conjecture for P5-free graphs
    Blanco, Pablo
    Bucic, Matija
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2024, 11 (01)
  • [4] The Edge-Erdős-Pósa Property
    Henning Bruhn
    Matthias Heinlein
    Felix Joos
    Combinatorica, 2021, 41 : 147 - 173
  • [5] A Unified Erdős–Pósa Theorem for Constrained Cycles
    Tony Huynh
    Felix Joos
    Paul Wollan
    Combinatorica, 2019, 39 : 91 - 133
  • [6] On the Edge-Erdős-Pósa Property of Ladders
    Steck, Raphael
    Ulmer, Arthur
    GRAPHS AND COMBINATORICS, 2024, 40 (03)
  • [7] Tight bound for the Erdős-Pósa property of tree minors
    Dujmovic, Vida
    Joret, Gwenal
    Micek, Piotr
    Morin, Pat
    COMBINATORICS PROBABILITY AND COMPUTING, 2024,
  • [8] The Erdős–Pósa Property for Odd Cycles in Graphs of Large Connectivity
    Carsten Thomassen
    Combinatorica, 2001, 21 : 321 - 333
  • [9] The Erdős–Pósa Property for Odd Cycles in Highly Connected Graphs
    Dieter Rautenbach
    Bruce Reed
    Combinatorica, 2001, 21 : 267 - 278
  • [10] Long Cycles have the Edge-Erdős-Pósa Property
    Henning Bruhn
    Matthias Heinlein
    Felix Joos
    Combinatorica, 2019, 39 : 1 - 36