The column-sufficiency and row-sufficiency of the linear transformation on Hilbert spaces

被引:0
|
作者
Xin-He Miao
Zheng-Hai Huang
机构
[1] Tianjin University,Department of Mathematics, School of Science
来源
关键词
Linear complementarity problem; Jordan product; Lorentz cone; Column-sufficiency; Row-sufficiency;
D O I
暂无
中图分类号
学科分类号
摘要
Given a real Hilbert space H with a Jordan product and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega\subset H}$$\end{document} being the Lorentz cone, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q\in H}$$\end{document}, and let T : H → H be a bounded linear transformation, the corresponding linear complementarity problem is denoted by LCP(T, Ω, q). In this paper, we introduce the concepts of the column-sufficiency and row-sufficiency of T. In particular, we show that the row-sufficiency of T is equivalent to the existence of the solution of LCP(T, Ω, q) under an operator commutative condition; and that the column-sufficiency along with cross commutative property is equivalent to the convexity of the solution set of LCP(T, Ω, q). In our analysis, the properties of the Jordan product and the Lorentz cone in H are interconnected.
引用
收藏
页码:109 / 123
页数:14
相关论文
共 2 条
  • [1] The column-sufficiency and row-sufficiency of the linear transformation on Hilbert spaces
    Miao, Xin-He
    Huang, Zheng-Hai
    JOURNAL OF GLOBAL OPTIMIZATION, 2011, 49 (01) : 109 - 123
  • [2] Sufficiency conditions for pole assignment column-regularizable implicit linear systems
    Korotka, Tetiana
    Zagalak, Petr
    Loiseau, Jean Jacques
    Kucera, Vladimir
    2012 17TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2012, : 457 - +