Let D ⊂ ℜ2 be simply connected. A subset K ⊂ D is relatively convex if a, b ∈ K, [a, b] ⊂ D implies [a, b] ⊂ K. We establish the following version of Helly’s Topological Theorem: If \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathcal{K}$$
\end{document} is a family of (at least 3) compact, polygonally connected and relatively convex subsets of D, then \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$ \cap \mathcal{K} \ne \not 0$$
\end{document}, provided each three members of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathcal{K}$$
\end{document} meet.