Relatively convex subsets of simply connected planar sets

被引:0
|
作者
Evelyn Magazanik
Micha A. Perles
机构
[1] The Hebrew University of Jerusalem,Einstein Institute of Mathematics, Edmond J. Safra Campus
来源
关键词
Convex Subset; Minimal Path; Nonempty Intersection; Interior Angle; Interior Vertex;
D O I
暂无
中图分类号
学科分类号
摘要
Let D ⊂ ℜ2 be simply connected. A subset K ⊂ D is relatively convex if a, b ∈ K, [a, b] ⊂ D implies [a, b] ⊂ K. We establish the following version of Helly’s Topological Theorem: If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{K}$$ \end{document} is a family of (at least 3) compact, polygonally connected and relatively convex subsets of D, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \cap \mathcal{K} \ne \not 0$$ \end{document}, provided each three members of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{K}$$ \end{document} meet.
引用
收藏
页码:143 / 155
页数:12
相关论文
共 50 条