Drift to Infinity and the Strong Law for Subordinated Random Walks and Lévy Processes

被引:0
|
作者
K. B. Erickson
Ross A. Maller
机构
[1] University of Washington,Department of Mathematics
[2] Australian National University,Centre for Mathematical Analysis, MSI, and School of Finance and Applied Statistics
来源
关键词
Random walk; random sum; Lévy process; subordinated process; drift to infinity; strong law;
D O I
暂无
中图分类号
学科分类号
摘要
We determine conditions under which a subordinated random walk of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\lfloor N(n)\rfloor}$$\end{document} tends to infinity almost surely (a.s), or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\lfloor N(n)\rfloor}/n$$\end{document} tends to infinity a.s., where {N(n)} is a (not necessarily integer valued) renewal process, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lfloor N(n)\rfloor}$$\end{document} denotes the integer part of N(n), and Sn is a random walk independent of {N(n)}. Thus we obtain versions of the “Alternatives”, for drift to infinity, or for divergence to infinity in the strong law, for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\lfloor N(n)\rfloor}$$\end{document}. A complication is that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\lfloor N(n)\rfloor}$$\end{document} is not, in general, itself, a random walk. We can apply the results, for example, to the case when N(n)=λ n, λ > 0, giving conditions for lim \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{n} S_{\lfloor \lambda n\rfloor}/n = \infty$$\end{document}, a.s., and lim sup \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{n} S_{\lfloor \lambda n\rfloor}/n = \infty$$\end{document}, a.s., etc. For some but not all of our results, N(1) is assumed to have finite expectation. Examples show that this is necessary for the kind of behaviour we consider. The results are also shown to hold in the same degree of generality for subordinated Lévy processes.
引用
收藏
页码:359 / 375
页数:16
相关论文
共 50 条
  • [1] Drift to infinity and the strong law for subordinated random walks and Levy processes
    Erickson, KB
    Maller, RA
    JOURNAL OF THEORETICAL PROBABILITY, 2005, 18 (02) : 359 - 375
  • [2] Random walks and Lévy processes as rough paths
    Ilya Chevyrev
    Probability Theory and Related Fields, 2018, 170 : 891 - 932
  • [3] Passage times of random walks and Lévy processes across power law boundaries
    R.A. Doney
    R.A. Maller
    Probability Theory and Related Fields, 2005, 133 : 57 - 70
  • [4] Approximation of quantum Lévy processes by quantum random walks
    Uwe Franz
    Adam Skalski
    Proceedings Mathematical Sciences, 2008, 118 : 281 - 288
  • [5] Ratio Limit Theorems for Random Walks and Lévy Processes
    Minzhi Zhao
    Jiangang Ying
    Potential Analysis, 2005, 23 : 357 - 380
  • [6] On Subordinated Multivariate Gaussian Lévy Processes
    B. Grigelionis
    Acta Applicandae Mathematicae, 2007, 96 : 233 - 246
  • [7] The uniqueness of the Wiener-Hopf factorisation of Lévy processes and random walks
    Doering, Leif
    Savov, Mladen
    Trottner, Lukas
    Watson, Alexander R.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (09) : 2951 - 2968
  • [8] Lévy random walks on multiplex networks
    Quantong Guo
    Emanuele Cozzo
    Zhiming Zheng
    Yamir Moreno
    Scientific Reports, 6
  • [9] RANDOM-WALKS AND STRONG LAW
    DRISCOLL, MF
    WEISS, NA
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1975, 31 (04): : 351 - 356
  • [10] Lévy scaling in random walks with fluctuating variance
    Santini, P.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (01): : 93 - 99