On the resurgence and asymptotic resurgence of homogeneous ideals

被引:0
|
作者
A. V. Jayanthan
Arvind Kumar
Vivek Mukundan
机构
[1] Indian Institute of Technology Madras,Department of Mathematics
[2] Chennai Mathematical Institute,Department of Mathematics
[3] Indian Institute of Technology Delhi,Department of Mathematics
来源
Mathematische Zeitschrift | 2022年 / 302卷
关键词
Resurgence; Asymptotic resurgence; Edge ideals; Cover ideals; Symbolic power; Chromatic number; 13F20; 13A15; 05E40;
D O I
暂无
中图分类号
学科分类号
摘要
Let K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {K}}$$\end{document} be a field and R=K[x1,…,xn]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R = {\mathbb {K}}[x_1, \ldots , x_n]$$\end{document}. We obtain an improved upper bound for asymptotic resurgence of squarefree monomial ideals in R. We study the effect on the resurgence when sum, product and intersection of ideals are taken. We obtain sharp upper and lower bounds for the resurgence and asymptotic resurgence of cover ideals of finite simple graphs in terms of associated combinatorial invariants. We also explicitly compute the resurgence and asymptotic resurgence of cover ideals of several classes of graphs. We characterize a graph being bipartite in terms of the resurgence and asymptotic resurgence of edge and cover ideals. We also compute explicitly the resurgence and asymptotic resurgence of edge ideals of some classes of graphs.
引用
收藏
页码:2407 / 2434
页数:27
相关论文
共 50 条
  • [1] On the resurgence and asymptotic resurgence of homogeneous ideals
    Jayanthan, A., V
    Kumar, Arvind
    Mukundan, Vivek
    MATHEMATISCHE ZEITSCHRIFT, 2022, 302 (04) : 2407 - 2434
  • [2] On resurgence via asymptotic resurgence
    DiPasquale, Michael
    Drabkin, Ben
    JOURNAL OF ALGEBRA, 2021, 587 : 64 - 84
  • [3] Extreme values of the resurgence for homogeneous ideals in polynomial rings
    Harbourne, Brian
    Kettinger, Jake
    Zimmitti, Frank
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2022, 226 (02)
  • [4] A SHARP BOUND FOR THE RESURGENCE OF SUMS OF IDEALS
    Van Kien, Do
    Nguyen, Hop d.
    Thuan, Le minh
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (04) : 1405 - 1418
  • [5] A SHARP BOUND FOR THE RESURGENCE OF SUMS OF IDEALS
    Kien, Do Van
    Nguyen, Hop Dang
    Thuan, Le Minh
    arXiv, 2022,
  • [6] THE RESURGENCE OF IDEALS OF POINTS AND THE CONTAINMENT PROBLEM
    Bocci, Cristiano
    Harbourne, Brian
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (04) : 1175 - 1190
  • [7] Expected Resurgence of Ideals Defining Gorenstein Rings
    Grifo, Eloisa
    Huneke, Craig
    Mukundan, Vivek
    MICHIGAN MATHEMATICAL JOURNAL, 2023, 73 (04) : 735 - 749
  • [8] ASYMPTOTIC RESURGENCE VIA INTEGRAL CLOSURES
    Dipasquale, Michael
    Francisco, Christopher A.
    Mermin, Jeffrey
    Schweig, Jay
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (09) : 6655 - 6676
  • [9] A duality theorem for the ic-resurgence of edge ideals
    Villarreal, Rafael H.
    EUROPEAN JOURNAL OF COMBINATORICS, 2023, 109
  • [10] Resurgence
    Romero, July
    ARTETERAPIA-PAPELES DE ARTETERAPIA Y EDUCACION ARTISTICA PARA LA INCLUSION SOCIAL, 2021, 16 : 53 - 53