Let K\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb {K}}$$\end{document} be a field and R=K[x1,…,xn]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R = {\mathbb {K}}[x_1, \ldots , x_n]$$\end{document}. We obtain an improved upper bound for asymptotic resurgence of squarefree monomial ideals in R. We study the effect on the resurgence when sum, product and intersection of ideals are taken. We obtain sharp upper and lower bounds for the resurgence and asymptotic resurgence of cover ideals of finite simple graphs in terms of associated combinatorial invariants. We also explicitly compute the resurgence and asymptotic resurgence of cover ideals of several classes of graphs. We characterize a graph being bipartite in terms of the resurgence and asymptotic resurgence of edge and cover ideals. We also compute explicitly the resurgence and asymptotic resurgence of edge ideals of some classes of graphs.
机构:
Department of Mathematics, Hanoi Pedagogical University 2, Vinh Phuc, Viet NamDepartment of Mathematics, Hanoi Pedagogical University 2, Vinh Phuc, Viet Nam
Kien, Do Van
Nguyen, Hop Dang
论文数: 0引用数: 0
h-index: 0
机构:
Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi,10307, Viet NamDepartment of Mathematics, Hanoi Pedagogical University 2, Vinh Phuc, Viet Nam
Nguyen, Hop Dang
Thuan, Le Minh
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics, Hanoi Pedagogical University 2, Vinh Phuc, Viet NamDepartment of Mathematics, Hanoi Pedagogical University 2, Vinh Phuc, Viet Nam
机构:
Ctr Invest & Estudios Avanzados IPN, Dept Matemat, Apartado Postal 14-740, Mexico City 07000, MexicoCtr Invest & Estudios Avanzados IPN, Dept Matemat, Apartado Postal 14-740, Mexico City 07000, Mexico