A class of join-completions of partially ordered semigroups

被引:0
|
作者
Haiwei Wang
机构
[1] Xi’an University of Posts and Telecommunications,Department of Mathematics, School of Science
来源
Semigroup Forum | 2023年 / 106卷
关键词
Join-completion; Partially ordered semigroup; Weakly consistent nucleus; Universal property;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce the notions of the join-completions of a partially ordered semigroup S and the weakly consistent nuclei on the power-set P(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {P}(S)$$\end{document}, and prove that the join-completions of a partially ordered semigroup S up to isomorphism are completely determined by the weakly consistent nuclei on P(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {P}(S)$$\end{document}. Then we provide the largest join-completion and show that the least join-completion does not exist in general. Finally, the universal property of the join-completions is investigated.
引用
收藏
页码:504 / 515
页数:11
相关论文
共 50 条