In this work, quinoline (a recalcitrant poly-nuclear aromatic compound) mineralization was studied by catalytic peroxidation process using ceria impregnated granular activated carbon. Various catalysts with different loading of ceria were prepared by wetness impregnation method and further characterized by liquid nitrogen adsorption–desorption technique, X-ray diffraction, scanning electron microscopy, thermo-gravimetric analysis and Fourier transform infrared spectroscopy. Effects of various parameters like ceria loading, pH, catalyst dose (Cw), H2O2/quinoline molar ratio, initial concentration (Co) of quinoline, reaction temperature (T) and time on quinoline degradation and chemical oxygen demand (COD) removal efficiencies were studied. Quinoline degradation of 81.6% and COD removal of 86.5% were observed at optimum operating condition of pH = 4, Co = 100 mg/L, Ce loading = 7.5 wt%, H2O2/quinoline molar ratio = 1, Cw = 0.5 g/L, T = 55 °C and reaction time = 4 h. The kinetics of the oxidation process was represented by the power law model.