Development of the technique of clustering by acoustic emission signal parameters

被引:0
|
作者
L. N. Stepanova
K. V. Kanifadin
I. S. Ramazanov
S. I. Kabanov
机构
[1] Chaplygin Siberian Research Institute of Aviation,
关键词
acoustic emission signal; clustering; a set of signal parameters; localization of flaws; coordinates; signal processing;
D O I
暂无
中图分类号
学科分类号
摘要
The technique of clustering by a set of parameters of acoustic emission (AE) signals, which allows reducing the time of processing of the recorded data, is considered. A comparative analysis of the stability of three clustering techniques (by shape, leading edge rise rate, and a set of AE signal parameters) with respect to the effect of random noise distributed according to a normal law is performed. A possibility of using the considered clustering techniques for distinguishing different stages of duralumin specimen fractures and during welding of steel specimens is experimentally demonstrated.
引用
收藏
页码:137 / 146
页数:9
相关论文
共 50 条
  • [1] Development of the technique of clustering by acoustic emission signal parameters
    Stepanova, L. N.
    Kanifadin, K. V.
    Ramazanov, I. S.
    Kabanov, S. I.
    RUSSIAN JOURNAL OF NONDESTRUCTIVE TESTING, 2010, 46 (02) : 137 - 146
  • [2] Statistical signal parameters of acoustic emission for process monitoring
    Stephan, M
    Fröhlich, KJ
    Frankenstein, B
    Hentschel, D
    Testing, Reliability, and Application of Micro- and Nano-Material Systems III, 2005, 5766 : 150 - 158
  • [3] Fiberglass epoxy from acoustic emission signal parameters
    Kouvarakos, M
    Hill, EV
    MATERIALS EVALUATION, 1996, 54 (09) : 1025 - 1031
  • [4] INFLUENCE OF PARAMETERS OF PARTICLE IMPACT ON SHAPE OF ACOUSTIC EMISSION SIGNAL
    Uher, Miroslav
    Benes, Petr
    NDE FOR SAFETY: DEFEKTOSKOPIE 2010, 2010, : 269 - 276
  • [5] APPLICATION OF A SIGNAL RECOVERY TECHNIQUE TO ACOUSTIC-EMISSION ANALYSIS
    ESMAIL, E
    GRABEC, I
    ULTRASONICS, 1978, 16 (02) : 87 - 89
  • [6] Acoustic Emission Events Clustering Parameters in Laboratory Rock Fracture Experiments
    Matochkina, S. D.
    Shebalin, P. N.
    Smirnov, V. B.
    Ponomarev, A. V.
    Malyutin, P. A.
    IZVESTIYA-PHYSICS OF THE SOLID EARTH, 2024, 60 (05) : 913 - 922
  • [7] Advanced damage detection technique by integration of unsupervised clustering into acoustic emission
    Behnia, Arash
    Chai, Hwa Kian
    GhasemiGol, Mohammad
    Sepehrinezhad, Alireza
    Mousa, Ahmad A.
    ENGINEERING FRACTURE MECHANICS, 2019, 210 : 212 - 227
  • [8] Acoustic Emission Signal Characterisation of Failure Mechanisms in CFRP Composites Using Dual-Sensor Approach and Spectral Clustering Technique
    Sofer, Michal
    Sofer, Pavel
    Pagac, Marek
    Volodarskaja, Anastasia
    Babiuch, Marek
    Grun, Filip
    POLYMERS, 2023, 15 (01)
  • [9] Robust Clustering of Acoustic Emission Signals Using Neural Networks and Signal Subspace Projections
    Vahid Emamian
    Mostafa Kaveh
    Ahmed H. Tewfik
    Zhiqiang Shi
    Laurence J. Jacobs
    Jacek Jarzynski
    EURASIP Journal on Advances in Signal Processing, 2003
  • [10] Identification of Acoustic Emission Signal of Tank Bottom Corrosion Based on Weighted Fuzzy Clustering
    Yu, Yang
    Cao, Hui
    Yang, Ping
    Fu, Yuan
    Jun, Ling
    ADVANCES IN ACOUSTIC EMISSION TECHNOLOGY, 2015, 158 : 395 - 404