Cluster Expansions: Necessary and Sufficient Convergence Conditions

被引:0
|
作者
Sabine Jansen
Leonid Kolesnikov
机构
[1] Ludwig-Maximilians-Universität,Mathematisches Institut
[2] Munich Center for Quantum Science and Technology (MCQST),undefined
来源
关键词
Cluster expansions; Correlation functions; Kirkwood–Salsburg equations; Combinatorics of connected graphs; Abstract polymer models; Hard-core germ–grain models; Subset polymers; Hard spheres; 82B05; 82B21;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a new convergence condition for the activity expansion of correlation functions in equilibrium statistical mechanics with possibly negative pair potentials. For non-negative pair potentials, the criterion is an if and only if condition. The condition is formulated with a sign-flipped Kirkwood–Salsburg operator and known conditions such as Kotecký–Preiss and Fernández–Procacci are easily recovered. In addition, we deduce new sufficient convergence conditions for hard-core systems in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document} and Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}^d$$\end{document} as well as for abstract polymer systems. The latter improves on the Fernández–Procacci criterion.
引用
收藏
相关论文
共 50 条