Global existence and finite time blow-up for a class of thin-film equation

被引:0
|
作者
Zhihua Dong
Jun Zhou
机构
[1] Southwest University,School of Mathematics and Statistics
关键词
Thin-film equation; Potential wells; Global existence; Blow-up; 35B40; 35K58; 35K35;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with a class of thin-film equation, which was considered in Li et al. (Nonlinear Anal Theory Methods Appl 147:96–109, 2016), where the case of lower initial energy (J(u0)≤d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J(u_0)\le d$$\end{document} and d is a positive constant) was discussed, and the conditions on global existence or blow-up are given. We extend the results of this paper on two aspects: Firstly, we consider the upper and lower bounds of blow-up time and asymptotic behavior when J(u0)<d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J(u_0)<d$$\end{document}; secondly, we study the conditions on global existence or blow-up when J(u0)>d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J(u_0)>d$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Global existence and finite time blow-up for a class of thin-film equation
    Dong, Zhihua
    Zhou, Jun
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (04):
  • [2] Global Existence, Finite Time Blow-Up, and Vacuum Isolating Phenomenon for a Class of Thin-Film Equation
    Xu, Guangyu
    Zhou, Jun
    Mu, Chunlai
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2020, 26 (02) : 265 - 288
  • [3] Global Existence, Finite Time Blow-Up, and Vacuum Isolating Phenomenon for a Class of Thin-Film Equation
    Guangyu Xu
    Jun Zhou
    Chunlai Mu
    Journal of Dynamical and Control Systems, 2020, 26 : 265 - 288
  • [4] Global existence and finite time blow-up of the solution for a thin-film equation with high initial energy
    Xu, Guangyu
    Zhou, Jun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (01) : 521 - 535
  • [5] Global existence blow up and extinction for a class of thin-film equation
    Li, Qingwei
    Gao, Wenjie
    Han, Yuzhu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 147 : 96 - 109
  • [6] Existence and finite-time blow-up for the solution to a thin-film surface evolution problem
    Boutat, M
    D'Angelo, Y
    Hilout, S
    Lods, V
    ASYMPTOTIC ANALYSIS, 2004, 38 (02) : 93 - 128
  • [7] Finite time blow-up for a thin-film equation with initial data at arbitrary energy level
    Sun, Fenglong
    Liu, Lishan
    Wu, Yonghong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (01) : 9 - 20
  • [8] Finite-time blow-up for a thin-film surface evolution problem
    Boutat, M
    D'Angelo, Y
    Hilout, S
    Lods, V
    COMPTES RENDUS MATHEMATIQUE, 2003, 337 (08) : 549 - 552
  • [9] Global Existence and Finite-Time Blow-Up for a Nonlinear Nonlocal Evolution Equation
    Constantin, Adrian
    Molinet, Luc
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 402 (03) : 3233 - 3252
  • [10] Global existence and blow-up to a class of degenerate parabolic equation with time dependent coefficients
    Xia, Anyin
    Pu, Xianxiang
    Li, Shan
    PROCEEDINGS OF THE 2015 4TH NATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS AND COMPUTER ENGINEERING ( NCEECE 2015), 2016, 47 : 1592 - 1595