Polynomials satisfied by square matrices: A converse to the Cayley-Hamilton theorem

被引:0
|
作者
Anandam Banerjee
机构
[1] Chennai Mathematical Institute,
关键词
Cayley-Hamilton theorem; Hilbert’s nullstellensatz; unique factorisation domain;
D O I
10.1007/BF02868198
中图分类号
学科分类号
摘要
引用
收藏
页码:47 / 58
页数:11
相关论文
共 50 条
  • [1] A CONVERSE FOR THE CAYLEY-HAMILTON THEOREM
    CHICONE, C
    KALTON, NJ
    PAPICK, IJ
    AMERICAN MATHEMATICAL MONTHLY, 1985, 92 (02): : 134 - 136
  • [2] CAYLEY-HAMILTON THEOREM
    MCCARTHY, CA
    AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (04): : 390 - 391
  • [3] A generalized Cayley-Hamilton theorem for polynomials with matrix coefficients
    Hwang, Suk-Geun
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (02) : 475 - 479
  • [4] Generalization of Cayley-Hamilton Theorem for Multivariate Rational Matrices
    Xing, Wei
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (03) : 631 - 634
  • [5] The quantum Cayley-Hamilton theorem
    Zhang, JJ
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 129 (01) : 101 - 109
  • [6] A Generalization of the Cayley-Hamilton Theorem
    Chen, Lizhou
    AMERICAN MATHEMATICAL MONTHLY, 2012, 119 (04): : 340 - 342
  • [7] THE CAYLEY-HAMILTON THEOREM FOR SUPERMATRICES
    URRUTIA, LF
    MORALES, N
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (09): : L441 - L447
  • [8] THE CAYLEY-HAMILTON THEOREM FOR SUPERMATRICES
    URRUTIA, LF
    MORALES, N
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (06): : 1981 - 1997
  • [9] NOTE ON THE CAYLEY-HAMILTON THEOREM
    GREENBERG, MJ
    AMERICAN MATHEMATICAL MONTHLY, 1984, 91 (03): : 193 - 195
  • [10] A generalized Cayley-Hamilton theorem
    Feng, Lianggui
    Tan, Haijun
    Zhao, Kaiming
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (07) : 2440 - 2445