Optimal Convergence Rates to Diffusion Waves for Solutions of the Hyperbolic Conservation Laws with Damping

被引:8
|
作者
Pierangelo Marcati
Ming Mei
Bruno Rubino
机构
[1] Università degli Studi di L’Aquila,Dipartimento di Matematica, Pura ed Applicata
[2] McGill University,Department of Mathematics and Statistics
关键词
Primary 76R50; Secondary 35L50; 35L60; 35L65; Asymptotic behavior; Darcy’s law; decay rate; energy method; initial-boundary value problems; nonlinear diffusion wave; optimal convergence rate;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is devoted to study the asymptotic behaviors of the solutions to a model of hyperbolic balance laws with damping on the quarter plane \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(x,t) \in \mathbb{R}_ + \times \mathbb{R}_ + .$ \end{document} We show the optimal convergence rates of the solutions to their corresponding nonlinear diffusion waves, which are the solutions of the corresponding nonlinear parabolic equation given by the related Darcy’s law. The optimal Lp-rates \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(1 + t)^{ - (1 - \tfrac{1} {{2p}})} $ \end{document} for 2 ≤ p ≤ ∞ obtained in the present paper improve those \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(1 + t)^{ - (\tfrac{3} {4} - \tfrac{1} {{2p}})} $ \end{document} in the previous works on the IBVP by K. Nishihara and T. Yang [J. Differential Equations156 (1999), 439–458] and by P. Marcati and M. Mei [Quart. Appl. Math. 56 (2000), 763–784]. Both the energy method and the method of Fourier transform are efficiently used to complete the proof.
引用
收藏
页码:S224 / S240
相关论文
共 50 条